代码:
import tensorflow as tf
import numpy as np
### 定义添加神经网络层函数 START ### def add_layer(inputs,in_size,out_size,activation_function=None):
"""描述: 添加神经网络层函数.
:param inputs: 输入神经层
:param in_size: 输入神经层的神经元个数
:param out_size: 输出神经层的神经元个数
:param activation_function: 激励函数
""" # 定义一个"in_size行,out_size列"的随机矩阵变量
Weights=tf.Variable(tf.random_normal([in_size,out_size])) # 定义一个"1行,out_size列"的0值矩阵基准变量
biases=tf.Variable(tf.zeros([1,out_size])+0.1) # 定义一个矩阵乘法函数公式
Wx_plus_b = tf.matmul(inputs,Weights)+biases # 判断是否使用激励函数
if activation_function is None:
outputs=Wx_plus_b
else:
outputs=activation_function(Wx_plus_b)
return outputs
### 定义添加神经网络层函数 END ### ### 定义变量结构 START### # 定义起始输入:在指定的-1到1的间隔内返回300个均匀间隔的1行300列的数组,再将数组转化为1列300行的矩阵
# 例如:
# x1 = np.array([1, 2, 3, 4, 5])
# # the shape of x1 is (5,)
# x1_new = x1[:, np.newaxis]
# # now, the shape of x1_new is (5, 1)
# array([[1],
# [2],
# [3],
# [4],
# [5]])
# x1_new = x1[np.newaxis,:]
# # now, the shape of x1_new is (1, 5)
# array([[1, 2, 3, 4, 5]]) x_data=np.linspace(-1,1,300)[:,np.newaxis] # 定义噪点 :使用高斯分布的概率密度函数定义一个均值为0,标准差为0.05的高斯随机数,个数为x_data的矩阵元素数
noise =np.random.normal(0,0.05,x_data.shape) # 定义起始输出:x_data的平方减去0.5,再加上噪点
y_data=np.square(x_data)-0.5+noise # 定义运行时参数变量
xs=tf.placeholder(tf.float32,[None,1])
ys=tf.placeholder(tf.float32,[None,1]) ### 定义神经网络结构 START### # 定义隐藏层神经网络层layer01
layer01=add_layer(xs,1,10,activation_function=tf.nn.relu)
# 定义隐藏层神经网络层layer02
layer02=add_layer(layer01,10,10,activation_function=tf.nn.sigmoid)
# 定义预测输出层 prediction
prediction =add_layer(layer02,10,1,activation_function=None)
# 计算损失
# 1.计算起始输出与预测输出的偏差的平方
loss_square=tf.square(y_data - prediction)
# 2.计算一个张量的各个维度上元素的总和.
reduce_sum_square=tf.reduce_sum(loss_square,reduction_indices=[1])
# 3.计算损失:张量的各个维度上的元素的平均值
loss=tf.reduce_mean(reduce_sum_square) #使用梯度下降算法训练所有样本
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
# 定义初始化变量
init=tf.initialize_all_variables()
# 创建会话
sess=tf.Session()
# 运行初始化变量指针
sess.run(init) ### 定义神经网络结构 END### ###定义变量结构 END### for i in range(2000):
sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
if i%50==0:
print(sess.run(loss,feed_dict={xs:x_data,ys:y_data}))
输出结果:
> Executing task: python d:\Work\002_WorkSpace\VSCode\Tensorflow\cnn.py <

WARNING:tensorflow:From C:\Program Files\Python\Python37\lib\site-packages\tensorflow\python\framework
\op_def_library.py:263: colocate_with (from tensorflow.python.framework.ops) is deprecated and will be removed in a future version.
Instructions for updating:
Colocations handled automatically by placer.
WARNING:tensorflow:From C:\Program Files\Python\Python37\lib\site-packages\tensorflow\python\ops
\math_ops.py:3066: to_int32 (from tensorflow.python.ops.math_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.cast instead.
WARNING:tensorflow:From C:\Program Files\Python\Python37\lib\site-packages\tensorflow\python\util
\tf_should_use.py:193: initialize_all_variables (from tensorflow.python.ops.variables) is deprecated and will be removed after 2017-03-02.
Instructions for updating:
Use `tf.global_variables_initializer` instead.
2019-06-16 18:23:25.445771: I tensorflow/core/platform/cpu_feature_guard.cc:141] Your CPU supports
instructions that this TensorFlow binary was not compiled to use: AVX2
0.9150444
0.018474927
0.012227052
0.008430008
0.006330067
0.005174632
0.0045147026
0.004099458
0.0037936615
0.0035521714
0.0033668855
0.003235288
0.0031796119
0.003798308
0.011472862
0.011122204
0.0038715526
0.0029777498
0.00284954
0.0028072707
0.0027813027
0.0027617016
0.0027467846
0.0027342557
0.0027231644
0.0027126905
0.0027037202
0.0026956936
0.0026887206
0.0026827992
0.0026773391
0.0026706234
0.0026643125
0.0026575066
0.0026512532
0.00264405
0.0026368005
0.0026302505
0.0026243015
0.0026188325 Terminal will be reused by tasks, press any key to close it.

[Tensorflow]激励函数tf.nn.relu样例的更多相关文章

  1. tf.nn.relu

    tf.nn.relu(features, name = None) 这个函数的作用是计算激活函数 relu,即 max(features, 0).即将矩阵中每行的非最大值置0. import tens ...

  2. 【TensorFlow】tf.nn.softmax_cross_entropy_with_logits的用法

    在计算loss的时候,最常见的一句话就是 tf.nn.softmax_cross_entropy_with_logits ,那么它到底是怎么做的呢? 首先明确一点,loss是代价值,也就是我们要最小化 ...

  3. 【TensorFlow】tf.nn.max_pool实现池化操作

    max pooling是CNN当中的最大值池化操作,其实用法和卷积很类似 有些地方可以从卷积去参考[TensorFlow]tf.nn.conv2d是怎样实现卷积的? tf.nn.max_pool(va ...

  4. tensorflow 之tf.nn.depthwise_conv2d and separable_conv2d实现及原理

    Depthwise Separable Convolution 1.简介 Depthwise Separable Convolution 是谷歌公司于2017年的CVPR中在论文”Xception: ...

  5. 【Tensorflow】tf.nn.depthwise_conv2d如何实现深度卷积?

    版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/mao_xiao_feng/article/ ...

  6. 【Tensorflow】tf.nn.atrous_conv2d如何实现空洞卷积?膨胀卷积

    介绍关于空洞卷积的理论可以查看以下链接,这里我们不详细讲理论: 1.Long J, Shelhamer E, Darrell T, et al. Fully convolutional network ...

  7. tf.nn.relu 激活函数

    tf.nn.relu(features, name = None) 计算校正线性:max(features, 0) 参数: features:一个Tensor.必须是下列类型之一:float32,fl ...

  8. TensorFlow学习---tf.nn.dropout防止过拟合

    一. Dropout原理简述: tf.nn.dropout是TensorFlow里面为了防止或减轻过拟合而使用的函数,它一般用在全连接层. Dropout就是在不同的训练过程中随机扔掉一部分神经元.也 ...

  9. TensorFlow:tf.nn.max_pool实现池化操作

    tf.nn.max_pool(value, ksize, strides, padding, name=None) 参数是四个,和卷积很类似: 第一个参数value:需要池化的输入,一般池化层接在卷积 ...

随机推荐

  1. createElement与createDocumentFragment的一些小区别

    在DOM操作里,createElement是创建一个新的节点,createDocumentFragment是创建一个文档片段. 网上可以搜到的大部分都是说使用createDocumentFragmen ...

  2. flutter doctor出现问题 [!] Android toolchain - develop for Android devices (Android SDK version 28.0.3) X Android license status unknown. Try re-installing or updating your Android SDK Manager. 的解决方案

    首先,问题描述: flutter doctor Doctor summary (to see all details, run flutter doctor -v): [√] Flutter (Cha ...

  3. maven install的时候把源码一起放到仓库

    在pom.xml中加入插件 <build>    <plugins>        <!-- Source attach plugin -->        < ...

  4. Leetcode: Longest Palindromic Substring && Summary: Palindrome

    Given a string s, find the longest palindromic substring in s. You may assume that the maximum lengt ...

  5. 数据库info.sql

    /* Navicat MySQL Data Transfer Source Server : loaderman Source Server Version : 50540 Source Host : ...

  6. PorterDuffXfermode之PorterDuff.Mode.XOR入门学习

    package com.loaderman.customviewdemo.view; import android.content.Context; import android.graphics.* ...

  7. MySQL批量导入Excel、txt数据

    MySQL批量导入Excel.txt数据 我想Excel是当今最大众化的批量数据管理软件了吧,所以我们会经常涉及到将Excel中数据导入到MySQL中的工作.网上有一些关于直接将Excel导入MySQ ...

  8. 23Flutter FloatingActionButton实现类似闲鱼App底部导航凸起按钮:

    /* 一.Flutter FloatingActionButton介绍 FloatingActionButton简称FAB,可以实现浮动按钮,也可以实现类型闲鱼app的底部凸起导航. child:子视 ...

  9. 阶段5 3.微服务项目【学成在线】_day09 课程预览 Eureka Feign_14-课程预览功能开发-CMS添加页面接口

    5.3 CMS添加页面接口 cms服务对外提供添加页面接口,实现:如果不存在页面则添加,否则就更新页面信息. 此接口由课程管理服务在课程预览时调用. 接口方法.:页面没有就添加.有了更新数据 之前的接 ...

  10. web手工项目03-登录功能测试用例及缺陷编写-流程图画法-前后台下单及发货流程图-流程图设计测试用例方法-功能测试涉及到的四种数据库场景

    回顾 注册功能测试(步骤,需求分析(输入分析,处理分析,输出分析),数据构造(有效等价类,无效等价类,有效数据,无效数据),编写用例,执行用例,缺陷报告) 轮播图功能测试(步骤,需求分析拆分测试点,测 ...