真是菜到爆炸。。。。容斥写反(反正第一次写qwq)


题意:$n-1$个公司,每个公司可以连一些边,求每个边让不同公司连的生成树方案数。

矩阵树定理+容斥原理(注意到$n$不是很大)

枚举公司参与与否的状态,每次重构矩阵,把参与连边的公司可以连的边写在矩阵中,然后求出方案。

代码中的$Gauss()$是辗转相除求解,$Gauss2()$是通过求逆元求解(貌似我的辗转相除更快(雾))

#include<cstdio>
#include<iostream>
#include<cstring>
#include<vector>
#define ll long long
#define R register ll
char B[<<],*S=B,*T=B;
#define getchar() (S==T&&(T=(S=B)+fread(B,1,1<<15,stdin),S==T)?EOF:*S++)
const int M=;
using namespace std;
inline int g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
}
int n,ans=,C; ll a[][]; vector<pair<int,int> > q[];
#define pb push_back
inline int Gauss() { ll ans=;
for(R i=;i<n;++i) {
for(R j=i+;j<n;++j) while(a[j][i]) {
ll t=a[i][i]/a[j][i];
for(R k=i;k<n;++k) (a[i][k]-=t*a[j][k])%=M;
swap(a[i],a[j]); ans=-ans;
} ans=(ans*a[i][i])%M; if(!ans) return ;
} return (ans+M)%M;
}
inline ll Inv(int x) {
if(x==) return ; if(x<) return ;
return (M-M/x*Inv(M%x))%M;
}
inline int Gauss2() { register ll ans=;
for(R i=;i<n;++i) for(R j=i+;j<n;++j) {
if(!a[i][i]) return ; if(!a[j][i]) continue;
register ll t=(ll)a[j][i]*Inv(a[i][i]%M)%M;
for(R k=i;k<n;++k) a[j][k]=((a[j][k]-t*a[i][k])%M+M)%M;
} for(R i=;i<n;++i) ans=ans*a[i][i]%M; return ans;
}
signed main() {
n=g(); for(R i=,x;i<n;++i) { x=g();
for(R j=,u,v;j<=x;++j) u=g(),v=g(),q[i].pb(make_pair(u,v));
} C=<<(n-);
for(R i=;i<C;++i) { R cnt=; memset(a,,sizeof(a));
for(R j=;j<n;++j) if(i&(<<j-)) {
for(R k=,u,v;k<q[j].size();++k)
u=q[j][k].first,v=q[j][k].second,
++a[u][u],++a[v][v],--a[u][v],--a[v][u];
++cnt;
} if((n-cnt)&) ans=(ans+Gauss2())%M;
else ans=(ans-Gauss2()+M)%M;
} printf("%lld\n",ans);
}

2019.06.02

Luogu P4336 [SHOI2016]黑暗前的幻想乡 矩阵树定理+容斥原理的更多相关文章

  1. bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥)

    bzoj4596/luoguP4336 [SHOI2016]黑暗前的幻想乡(矩阵树定理,容斥) bzoj Luogu 题解时间 看一看数据范围,求生成树个数毫无疑问直接上矩阵树定理. 但是要求每条边都 ...

  2. bzoj 4596 [Shoi2016]黑暗前的幻想乡 矩阵树定理+容斥

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 559  Solved: 325[Submit][Sta ...

  3. 【BZOJ4596】【Luogu P4336】 [SHOI2016]黑暗前的幻想乡 矩阵树定理,容斥

    同样是矩阵树定理的裸题.但是要解决它需要能够想到容斥才可以. \(20\)以内的数据范围一定要试试容斥的想法. #include <bits/stdc++.h> using namespa ...

  4. [SHOI2016] 黑暗前的幻想乡 - 矩阵树定理,容斥

    #include <bits/stdc++.h> using namespace std; #define int long long const int N = 20; const in ...

  5. P4336 [SHOI2016]黑暗前的幻想乡

    P4336 [SHOI2016]黑暗前的幻想乡 矩阵树定理(高斯消元+乘法逆元)+容斥 ans=总方案数 -(公司1未参加方案数 ∪ 公司2未参加方案数 ∪ 公司3未参加方案数 ∪ ...... ∪ ...

  6. 题解 P4336 [SHOI2016]黑暗前的幻想乡

    题解 前置芝士 :矩阵树定理 本题是一道计数题,有两个要求: 建造的公路构成一颗生成树 每条公路由不同的公司建造,每条公路与一个公司一一映射 那么看到这两个要求后,我们很容易想到第一个条件用矩阵树定理 ...

  7. 洛谷P4336 [SHOI2016]黑暗前的幻想乡 [Matrix-Tree定理,容斥]

    传送门 思路 首先看到生成树计数,想到Matrix-Tree定理. 然而,这题显然是不能Matrix-Tree定理硬上的,因为还有每个公司只能建一条路的限制.这个限制比较恶心,尝试去除它. 怎么除掉它 ...

  8. bzoj4596[Shoi2016]黑暗前的幻想乡 Matrix定理+容斥原理

    4596: [Shoi2016]黑暗前的幻想乡 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 464  Solved: 264[Submit][Sta ...

  9. [ZJOI2016]小星星&[SHOI2016]黑暗前的幻想乡(容斥)

    这两道题思路比较像,所以把他们放到一块. [ZJOI2016]小星星 题目描述 小Y是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有n颗小星星,用m条彩色的细线串了起来,每条细线连着两颗小星星. ...

随机推荐

  1. mac 环境下mysql登陆失败问题Access denied for user 'root'@'localhost' (using passwordYES)

    1.停止mysql服务 sudo /usr/local/mysql/support-files/mysql.server stop 2.进入mysql的bin目录 cd /usr/local/mysq ...

  2. [DEBUG] Spring boot前端html无法下载示例文件

    更新:原方法打jar包的时候是可以的,后来我打war包之后下载的文件就是0字节.尴尬:) 所以现在更换一种方法,然后打war包.在服务器已测试成功. 前端不需要改变,只需要更改controller: ...

  3. C++ Primer 5th Chap1.Getting Started

    在CommandPrompt上:(即cmd) 假定文件名为prog1.cc: 编译:$Compiler'sName prog1.cc 打开(prog1.exe):$prog1 打开(在当前目录):$. ...

  4. zookeeper集群搭建与升级

    zookeeper 1.zookeeper功能 1-1.配置管理 集中管理配置文件实现服务治理 1-2.命名服务 如为了通过网络访问一个系统,我们得知道对方的IP地址,但是IP地址对人非常不友好,这个 ...

  5. 【Trie】L 语言

    [题目链接]: https://loj.ac/problem/10053 [题意]: 给出n个模式串.请问文本串是由多少个模式串组成的. [题解]: 当我学完AC自动机后,发现这个题目也太简单了吧. ...

  6. 监控 Kubernetes 集群应用

    Prometheus的数据指标是通过一个公开的 HTTP(S) 数据接口获取到的,我们不需要单独安装监控的 agent,只需要暴露一个 metrics 接口,Prometheus 就会定期去拉取数据: ...

  7. hdu 6069 Counting divisors 公式+区间筛

    比赛的时候把公式扣出来了,,但是没有想到用筛法算公因子,,默默学习一下.. 题解:设n=p1^(c1)p2^{c2}...pm^{cm},n=p​1^​c​1*​​​​p​2​^c​2​​​​...p ...

  8. Python文件的四种读写方式——r a w r+

    # 文件的基本操作,但是一般不这么使用,因为经常会忘记关闭 password=open("abc.txt",mode="r",encoding="UT ...

  9. 解决 Oracle TNSListener 服务启动找不到路径问题

    TNSListener服务无法启动,提示从系统无法找到指定路径! 解决方法: 在控制面板/管理工具/服务中双击打开OracleOraHome92TNSListener的服务看到其 “可执行文件的路径” ...

  10. 钉钉微应用内置浏览器js缓存清理

    html中引用的js文件加上版本号,如下: <script type="text/javascript" src="js/xxx.js?version=1.0.1& ...