title: 【线性代数】3-2:零空间(Nullspace)

categories:

  • Mathematic
  • Linear Algebra

    keywords:
  • Nullspace
  • Pivot Columns
  • Free Columns
  • Special Solutions
  • Ux=0
  • Rx=0

    toc: true

    date: 2017-09-19 17:40:36

Abstract: 零空间的相关知识点,使用到前面的消元过程

Keywords: Nullspace,Pivot Columns,Free Columns,Special Solutions,Ux=0,Rx=0

开篇废话

重新搭的环境发现有点问题,有些latex公式显示格式有些问题,慢慢发现慢慢改,然后找一个完备的,能完全备份网站的方法,一劳永逸的完成网站,这样就可以集中精力在写博客,理解知识上了,其实我以前总犯这种错误,把一些辅助性的东西,当做主要工作点,本末倒置,买椟还珠,这种事情还是少干,毕竟人生苦短(我用python)

Ax=0Ax=0Ax=0

之前讲Ax=bAx=bAx=b的时候提到过,正着看反着看的例子,其实这个办法是MIT18.01Caculus里面讲的一种技巧,不同的方向含义不同,今天更直接了当,把b改成o,好啦,来吧,怎么能让A的列组合出来0?不用说0肯定可以,那么只有0么?并不是。

The nullspace of A consists of all solutions to Ax=0.These vectors x are in ℜn\Re^nℜn the nullspace containing all solutions of Ax=0 is donate by N(A)N(A)N(A)

其实这个nullspace还是挺别致的,起码他包含0,而之前Ax=b就不一定包含0。所以可以看出,nullspace是个subspace,原因是如果x,y向量Nullspace里面的两个向量,那么A(x+y)=0A(x+y)=0A(x+y)=0,并且A(cx)=0A(cx)=0A(cx)=0成立,所以nullspace是个子空间 Ax=bAx=bAx=b并不一定是。

Special Solutions

本文为节选,完整内容地址https://www.face2ai.com/Math-Linear-Algebra-Chapter-3-2转载请标明出处

【线性代数】3-2:零空间(Nullspace)的更多相关文章

  1. MIT线性代数:6.列向量和零空间

  2. CS229 斯坦福大学机器学习复习材料(数学基础) - 线性代数

    CS229 斯坦福大学机器学习复习材料(数学基础) - 线性代数 线性代数回顾与参考 1 基本概念和符号 1.1 基本符号 2 矩阵乘法 2.1 向量-向量乘法 2.2 矩阵-向量乘法 2.3 矩阵- ...

  3. 斯坦福大学CS224d基础1:线性代数回顾

    转自 http://blog.csdn.net/han_xiaoyang/article/details/51629242 斯坦福大学CS224d基础1:线性代数知识 作者:Zico Kolter ( ...

  4. MIT线性代数课程 总结与理解-第一部分

    概述 个人认为线性代数从三个角度,或者说三个工具来阐述了线性关系,分别是: 向量 矩阵 空间 这三个工具有各自的一套方法,而彼此之间又存在这密切的联系,通过这些抽象出来的工具可以用来干一些实际的活,最 ...

  5. 线性代数导论 | Linear Algebra 课程

    搞统计的线性代数和概率论必须精通,最好要能锻炼出直觉,再学机器学习才会事半功倍. 线性代数只推荐Prof. Gilbert Strang的MIT课程,有视频,有教材,有习题,有考试,一套学下来基本就入 ...

  6. 线性代数及其应用 (David C.Lay, Steven R.Lay 著)

    第1章 线性代数中的线性方程组 (已看) 介绍性实例 经济学与工程中的线性模型 1.1 线性方程组 1.2 行化简与阶梯形矩阵 1.3 向量方程 1.4 矩阵方程Ax=b 1.5 线性方程组的解集 1 ...

  7. 线性代数笔记13——Ax=b的通解

    关于最简行阶梯矩阵和矩阵秩,可参考<线性代数笔记7——再看行列式与矩阵> 召唤一个方程Ax = b: 3个方程4个变量,方程组有无数解,现在要关注的是b1b2b3之间满足什么条件时方程组有 ...

  8. 线性代数之——对角化和 A 的幂

    利用特征向量的属性,矩阵 \(A\) 可以变成一个对角化矩阵 \(\Lambda\). 1. 对角化 假设一个 \(n×n\) 的矩阵 \(A\) 有 \(n\) 个线性不相关的特征向量 \(x_1, ...

  9. 【线性代数】3-5:独立性,基和维度(Independence,Basis and Dimension)

    title: [线性代数]3-5:独立性,基和维度(Independence,Basis and Dimension) categories: Mathematic Linear Algebra ke ...

随机推荐

  1. linux mysql 数据库操作导入导出 数据表导出导入

    linux mysql 数据库操作导入导出 数据表导出导入 1,数据库导入 mysql -uroot -p show databases; create database newdb; use 数据库 ...

  2. Kafka实际使用过程中遇到的一些问题及解决方法

    Kafka实际使用过程中遇到的一些问题及解决方法: 1.关于Kafka的分区: 开始使用Kafka的时候,没有分区的概念,以为类似于传统的MQ中间件一样,就直接从程序中获取Kafka中的数据. 后来程 ...

  3. MangoDB CSharp Driver

    1.引用MongoDB for C# Driver 从网上下载C#访问MongoDB的驱动,得到两个DLL: MongoDB.Driver.dll MongoDB.Bson.dll 将它们引用到项目中 ...

  4. Qt调用VS生成的dll

      预备知识: 1.如果在没有导入库文件(.lib),而只有头文件(.h)与动态链接库(.dll)时,我们才需要显示调用,如果这三个文件都全的话,我们就可以使用简单方便的隐式调用. 2.通常Windo ...

  5. cmd设置电脑自动关机

    cmd设置电脑自动关机 设置:(3600代表一小时,单位s) shutdown -s -t 3600 取消 shutdown -a

  6. elmentUI为table中的单元格添加事件

    <el-main> <el-tabs v-model="curTab" type="card"> <!-- tab签 --> ...

  7. K2 BPM_如何将RPA的价值最大化?_全球领先的工作流引擎

     自动化技术让企业能够更有效的利用资源,减少由于人为失误而造成的风险损失.随着科技的进步,实现自动化的途径变得更加多样化. 据Forrester预测,自动化技术将在2019年成为引领数字化转型的前沿技 ...

  8. python3学习特性

    一 实例变量与类变量 class Pepple: __age=18 __name="zhangfff" @classmethod def GetInfo(cls): print(c ...

  9. hadoop中hive常用的交互式操作

    hive的帮助命令: [hadoop@master tmp]$ hive -help usage: hive -d,--define <key=value> Variable substi ...

  10. C#面向对象(五大基本原则 )

    五大原则 单一职责原则(SRP)开放封闭原则(OCP) 里氏替换原则(LSP) 依赖倒置原则(DIP) 接口隔离原则(ISP)  一.单一职责原则SRP(Single Responsibility P ...