title: 【线性代数】3-2:零空间(Nullspace)

categories:

  • Mathematic
  • Linear Algebra

    keywords:
  • Nullspace
  • Pivot Columns
  • Free Columns
  • Special Solutions
  • Ux=0
  • Rx=0

    toc: true

    date: 2017-09-19 17:40:36

Abstract: 零空间的相关知识点,使用到前面的消元过程

Keywords: Nullspace,Pivot Columns,Free Columns,Special Solutions,Ux=0,Rx=0

开篇废话

重新搭的环境发现有点问题,有些latex公式显示格式有些问题,慢慢发现慢慢改,然后找一个完备的,能完全备份网站的方法,一劳永逸的完成网站,这样就可以集中精力在写博客,理解知识上了,其实我以前总犯这种错误,把一些辅助性的东西,当做主要工作点,本末倒置,买椟还珠,这种事情还是少干,毕竟人生苦短(我用python)

Ax=0Ax=0Ax=0

之前讲Ax=bAx=bAx=b的时候提到过,正着看反着看的例子,其实这个办法是MIT18.01Caculus里面讲的一种技巧,不同的方向含义不同,今天更直接了当,把b改成o,好啦,来吧,怎么能让A的列组合出来0?不用说0肯定可以,那么只有0么?并不是。

The nullspace of A consists of all solutions to Ax=0.These vectors x are in ℜn\Re^nℜn the nullspace containing all solutions of Ax=0 is donate by N(A)N(A)N(A)

其实这个nullspace还是挺别致的,起码他包含0,而之前Ax=b就不一定包含0。所以可以看出,nullspace是个subspace,原因是如果x,y向量Nullspace里面的两个向量,那么A(x+y)=0A(x+y)=0A(x+y)=0,并且A(cx)=0A(cx)=0A(cx)=0成立,所以nullspace是个子空间 Ax=bAx=bAx=b并不一定是。

Special Solutions

本文为节选,完整内容地址https://www.face2ai.com/Math-Linear-Algebra-Chapter-3-2转载请标明出处

【线性代数】3-2:零空间(Nullspace)的更多相关文章

  1. MIT线性代数:6.列向量和零空间

  2. CS229 斯坦福大学机器学习复习材料(数学基础) - 线性代数

    CS229 斯坦福大学机器学习复习材料(数学基础) - 线性代数 线性代数回顾与参考 1 基本概念和符号 1.1 基本符号 2 矩阵乘法 2.1 向量-向量乘法 2.2 矩阵-向量乘法 2.3 矩阵- ...

  3. 斯坦福大学CS224d基础1:线性代数回顾

    转自 http://blog.csdn.net/han_xiaoyang/article/details/51629242 斯坦福大学CS224d基础1:线性代数知识 作者:Zico Kolter ( ...

  4. MIT线性代数课程 总结与理解-第一部分

    概述 个人认为线性代数从三个角度,或者说三个工具来阐述了线性关系,分别是: 向量 矩阵 空间 这三个工具有各自的一套方法,而彼此之间又存在这密切的联系,通过这些抽象出来的工具可以用来干一些实际的活,最 ...

  5. 线性代数导论 | Linear Algebra 课程

    搞统计的线性代数和概率论必须精通,最好要能锻炼出直觉,再学机器学习才会事半功倍. 线性代数只推荐Prof. Gilbert Strang的MIT课程,有视频,有教材,有习题,有考试,一套学下来基本就入 ...

  6. 线性代数及其应用 (David C.Lay, Steven R.Lay 著)

    第1章 线性代数中的线性方程组 (已看) 介绍性实例 经济学与工程中的线性模型 1.1 线性方程组 1.2 行化简与阶梯形矩阵 1.3 向量方程 1.4 矩阵方程Ax=b 1.5 线性方程组的解集 1 ...

  7. 线性代数笔记13——Ax=b的通解

    关于最简行阶梯矩阵和矩阵秩,可参考<线性代数笔记7——再看行列式与矩阵> 召唤一个方程Ax = b: 3个方程4个变量,方程组有无数解,现在要关注的是b1b2b3之间满足什么条件时方程组有 ...

  8. 线性代数之——对角化和 A 的幂

    利用特征向量的属性,矩阵 \(A\) 可以变成一个对角化矩阵 \(\Lambda\). 1. 对角化 假设一个 \(n×n\) 的矩阵 \(A\) 有 \(n\) 个线性不相关的特征向量 \(x_1, ...

  9. 【线性代数】3-5:独立性,基和维度(Independence,Basis and Dimension)

    title: [线性代数]3-5:独立性,基和维度(Independence,Basis and Dimension) categories: Mathematic Linear Algebra ke ...

随机推荐

  1. vue的基本语法

    在学习vue之前,我们应了解一下什么是vue.js? 什么是Vue.js? Vue.js是目前最后一个前端框架,React是最流行的一个前端框架(react除了开发网站,还可以开发手机App,Vue语 ...

  2. not or and 的优先级是不同的

    not or and 的优先级是不同的: not > and > or 请用最快速度说出答案: not 1 or 0 and 1 or 3 and 4 or 5 and 6 or 7 an ...

  3. 第十二章 ZYNQ-MIZ701 PL中断请求

      本篇文章主要介绍外设(PL)产生的中断请求,在PS端进行处理. 在PL端通过按键产生中断,PS接受到之后点亮相应的LED. 本文所使用的开发板是Miz701 PC 开发环境版本:Vivado 20 ...

  4. 初识机器学习——概念介绍(imooc笔记)

    前言 imooc的机器学习一个最基本的介绍类课程,http://www.imooc.com/learn/717 ,不怎么涉及具体的算法或实现,只是讲了讲一些理论概念. 概述 机器学习: 利用计算机从历 ...

  5. react的状态管理

    近两年前端技术的发展如火如荼,大量的前端项目都在使用或转向 Vue 和 React 的阵营, 由前端渲染页面的单页应用占比也越来越高,这就代表前端工作的复杂度也在直线上升,前端页面上展示的信息越来越多 ...

  6. oracle练手(一)

    练手001 1.列出至少有一个员工的所有部门 select dname from dept where deptno in (select deptno from emp); select dname ...

  7. 开始学Python 啦 ,持续不断总结中。。(转)快捷键的使用

    最重要的快捷键1. ctrl+shift+A:万能命令行2. shift两次:查看资源文件新建工程第一步操作1. module设置把空包分层去掉,compact empty middle packag ...

  8. python 画正态曲线

    import numpy as np import matplotlib.pyplot as plt import math # Python实现正态分布 # 绘制正态分布概率密度函数 u = 0 # ...

  9. 【php设计模式】享元模式

    享元模式其实就是共享独享模式,减少重复实例化对象的操作,从而将实例化对象造成的内存开销降到最低. 享元模式尝试重用现有的同类对象,如果未找到匹配的对象,则创建新对象.我们将通过创建 5 个对象来画出 ...

  10. 工作总结 页面 ActionResult / JsonResult 将对象以 Json() 返回

    其实都不用在页面上序列化   打印 都不需要在页面上 像这样  var ajaxResult = eval("(" + data + ")");  序列化为对象 ...