【线性代数】3-2:零空间(Nullspace)
title: 【线性代数】3-2:零空间(Nullspace)
categories:
- Mathematic
- Linear Algebra
keywords: - Nullspace
- Pivot Columns
- Free Columns
- Special Solutions
- Ux=0
- Rx=0
toc: true
date: 2017-09-19 17:40:36
Abstract: 零空间的相关知识点,使用到前面的消元过程
Keywords: Nullspace,Pivot Columns,Free Columns,Special Solutions,Ux=0,Rx=0
开篇废话
重新搭的环境发现有点问题,有些latex公式显示格式有些问题,慢慢发现慢慢改,然后找一个完备的,能完全备份网站的方法,一劳永逸的完成网站,这样就可以集中精力在写博客,理解知识上了,其实我以前总犯这种错误,把一些辅助性的东西,当做主要工作点,本末倒置,买椟还珠,这种事情还是少干,毕竟人生苦短(我用python)
Ax=0Ax=0Ax=0
之前讲Ax=bAx=bAx=b的时候提到过,正着看反着看的例子,其实这个办法是MIT18.01Caculus里面讲的一种技巧,不同的方向含义不同,今天更直接了当,把b改成o,好啦,来吧,怎么能让A的列组合出来0?不用说0肯定可以,那么只有0么?并不是。
The nullspace of A consists of all solutions to Ax=0.These vectors x are in ℜn\Re^nℜn the nullspace containing all solutions of Ax=0 is donate by N(A)N(A)N(A)
其实这个nullspace还是挺别致的,起码他包含0,而之前Ax=b就不一定包含0。所以可以看出,nullspace是个subspace,原因是如果x,y向量Nullspace里面的两个向量,那么A(x+y)=0A(x+y)=0A(x+y)=0,并且A(cx)=0A(cx)=0A(cx)=0成立,所以nullspace是个子空间 Ax=bAx=bAx=b并不一定是。
Special Solutions
本文为节选,完整内容地址https://www.face2ai.com/Math-Linear-Algebra-Chapter-3-2转载请标明出处
【线性代数】3-2:零空间(Nullspace)的更多相关文章
- MIT线性代数:6.列向量和零空间
- CS229 斯坦福大学机器学习复习材料(数学基础) - 线性代数
CS229 斯坦福大学机器学习复习材料(数学基础) - 线性代数 线性代数回顾与参考 1 基本概念和符号 1.1 基本符号 2 矩阵乘法 2.1 向量-向量乘法 2.2 矩阵-向量乘法 2.3 矩阵- ...
- 斯坦福大学CS224d基础1:线性代数回顾
转自 http://blog.csdn.net/han_xiaoyang/article/details/51629242 斯坦福大学CS224d基础1:线性代数知识 作者:Zico Kolter ( ...
- MIT线性代数课程 总结与理解-第一部分
概述 个人认为线性代数从三个角度,或者说三个工具来阐述了线性关系,分别是: 向量 矩阵 空间 这三个工具有各自的一套方法,而彼此之间又存在这密切的联系,通过这些抽象出来的工具可以用来干一些实际的活,最 ...
- 线性代数导论 | Linear Algebra 课程
搞统计的线性代数和概率论必须精通,最好要能锻炼出直觉,再学机器学习才会事半功倍. 线性代数只推荐Prof. Gilbert Strang的MIT课程,有视频,有教材,有习题,有考试,一套学下来基本就入 ...
- 线性代数及其应用 (David C.Lay, Steven R.Lay 著)
第1章 线性代数中的线性方程组 (已看) 介绍性实例 经济学与工程中的线性模型 1.1 线性方程组 1.2 行化简与阶梯形矩阵 1.3 向量方程 1.4 矩阵方程Ax=b 1.5 线性方程组的解集 1 ...
- 线性代数笔记13——Ax=b的通解
关于最简行阶梯矩阵和矩阵秩,可参考<线性代数笔记7——再看行列式与矩阵> 召唤一个方程Ax = b: 3个方程4个变量,方程组有无数解,现在要关注的是b1b2b3之间满足什么条件时方程组有 ...
- 线性代数之——对角化和 A 的幂
利用特征向量的属性,矩阵 \(A\) 可以变成一个对角化矩阵 \(\Lambda\). 1. 对角化 假设一个 \(n×n\) 的矩阵 \(A\) 有 \(n\) 个线性不相关的特征向量 \(x_1, ...
- 【线性代数】3-5:独立性,基和维度(Independence,Basis and Dimension)
title: [线性代数]3-5:独立性,基和维度(Independence,Basis and Dimension) categories: Mathematic Linear Algebra ke ...
随机推荐
- 数据结构与算法之排序算法(python实现)
1.冒泡排序 冒泡排序的原理是依次比较相邻的两个数,如果前一个数比后一个数大则交换位置,这样一组比较下来会得到该组最大的那个数,并且已经放置在最后,下一轮用同样的方法可以得到次大的数,并且被放置在正确 ...
- S02_CH05_UBOOT实验Enter a post title
S02_CH05_UBOOT实验 5.1什么是固化 我们前几章的程序都是通过JTAG先下载bit流文件,再下载elf文件,之后点击Run As来运行的程序.JTAG的方法是通过TCL脚本来初始化PS, ...
- Springboot使用外置tomcat的同时使用websocket通信遇到的坑
随意门:https://blog.csdn.net/qq_43323720/article/details/99660430 另外,使用了nginx的话,需要注意开放websocket支持 serve ...
- 第二讲,NT头文件格式,以及文件头格式
今天详解NT 头格式,以及文件头格式,以及作用, 关于DOS头文件格式,以及DOSStub昨天的博客已经写过了.主要是分散讲解.便于理解. 一丶最小PE的生成,以及标准PE的生成 ps: (如果直接学 ...
- 3037 插板法+lucas
先说下lucas定理 1)Lucas定理:p为素数,则有: (2)证明: n=(ak...a2,a1,a0)p = (ak...a2,a1)p*p + a0 = [n/p]*p+a0 (注意 这里( ...
- python 的常见排序算法实现
python 的常见排序算法实现 参考以下链接:https://www.cnblogs.com/shiluoliming/p/6740585.html 算法(Algorithm)是指解题方案的准确而完 ...
- IEnumerable<T>和IQuryable<T>的区别
https://stackoverflow.com/questions/1578778/using-iqueryable-with-linq/1578809#1578809 The main diff ...
- Web框架概述——React.js
目前,在前端Web开发中,三大热门框架为React.js,Vue.js,Angular.js .当然,三大框架各有各的优缺点,这里就不多说了,下面我就针对前段时间所学的React框架做一下整体知识点的 ...
- struts 漏洞
安装shop++ 安装成功 访问 http://127.0.0.1:8080 即网站首页 访问 http://127.0.0.1:8080/admin 即网站后台
- (二十四)Ubuntu16.04配置ADB调试环境
一.安装adb 1.可以通过 apt-get install android-tools-adb 来安装adb sudo add-apt-repository ppa:nilarimogard/web ...
