str2int HDU - 4436 (后缀自动机)
str2int
\]
题意
给出 \(n\) 个串,求出这 \(n\) 个串所有子串代表的数字的和。
思路
首先可以把这些串合并起来,串与串之间用没出现过的字符分隔开来,然后构建后缀自动机,因为后缀自动机上从 \(root\) 走到的任意节点都是一个子串,所有可以利用这个性质来做。
一开始我的做法是做 \(dfs\),令 \(dp[i]\) 表示节点 \(i\) 的贡献,转移就是 \(dp[v] = dp[v]+tmp*10+j\),表示从 \(root\) 到 \(u\) 的权值是\(tmp\),\(v\) 是 \(u\) 往 \(j\)走的下一个点。结果显然超时了。
我们发现对于\(dp[u]->dp[v]\)过程,如果之前走到 \(dp[u]\) 的有 \(12\),\(2\) 两步,假设现在往 \(3\) 这条边走,得到 \(12*10+3\),\(2*10+3\),那么其实这些值的贡献是可以一次性计算的,无论之前走到 \(dp[u]\) 的有几条路,都需要让他们全部 \(*10\),而 \(3\) 的贡献则是由走到 \(dp[u]\) 的路径数确定的。
那么我们就可以得到第二个方程:
- \(dp1[i]\) 表示节点 \(i\) 的贡献
- \(dp2[i]\) 表示之前有多少种方案走到 \(i\)
- \(dp1[v] = dp1[v] + dp1[u]*10 + dp2[u]*j\)
- \(dp2[v] = dp[2[v] + dp2[v]\)
最后为了去除前导零,只要控制从 \(root\) 出来的边最少从 \(1\) 开始就可以了。
如此计算后,\(\sum dp1[i]\) 就是最后的答案。
#include <map>
#include <set>
#include <list>
#include <ctime>
#include <cmath>
#include <stack>
#include <queue>
#include <cfloat>
#include <string>
#include <vector>
#include <cstdio>
#include <bitset>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define lowbit(x) x & (-x)
#define mes(a, b) memset(a, b, sizeof a)
#define fi first
#define se second
#define pii pair<int, int>
#define INOPEN freopen("in.txt", "r", stdin)
#define OUTOPEN freopen("out.txt", "w", stdout)
typedef unsigned long long int ull;
typedef long long int ll;
const int maxn = 2e5 + 10;
const int maxm = 1e5 + 10;
const ll mod = 2012;
const ll INF = 1e18 + 100;
const int inf = 0x3f3f3f3f;
const double pi = acos(-1.0);
const double eps = 1e-8;
using namespace std;
int n, m;
int cas, tol, T;
struct Sam {
struct Node {
int next[20];
int fa, len;
void init() {
mes(next, 0);
fa = len = 0;
}
} node[maxn<<1];
int dp1[maxn<<1], dp2[maxn<<1];
bool vis[maxn<<1];
int tax[maxn<<1], gid[maxn<<1];
int last, sz;
void init() {
mes(dp1, 0);
mes(dp2, 0);
last = sz = 1;
node[sz].init();
}
void insert(int k) {
int p = last, np = last = ++sz;
node[np].init();
node[np].len = node[p].len + 1;
for(; p&&!node[p].next[k]; p=node[p].fa)
node[p].next[k] = np;
if(p == 0) {
node[np].fa = 1;
} else {
int q = node[p].next[k];
if(node[q].len == node[p].len+1) {
node[np].fa = q;
} else {
int nq = ++sz;
node[nq] = node[q];
node[nq].len = node[p].len+1;
node[np].fa = node[q].fa = nq;
for(; p&&node[p].next[k]==q; p=node[p].fa)
node[p].next[k] = nq;
}
}
}
void solve() {
int ans = 0;
for(int i=0; i<=sz; i++) tax[i] = 0;
for(int i=1; i<=sz; i++) tax[node[i].len]++;
for(int i=1; i<=sz; i++) tax[i] += tax[i-1];
for(int i=1; i<=sz; i++) gid[tax[node[i].len]--] = i;
dp2[1] = 1;
for(int i=1; i<=sz; i++) {
int u = gid[i];
ans = (ans+dp1[u])%mod;
// printf("%d %d %d\n", u, dp1[u], dp2[u]);
for(int j=(u==1 ? 1:0); j<=9; j++) {
if(node[u].next[j+1] == 0) continue;
int nst = node[u].next[j+1];
dp1[nst] = (dp1[nst] + dp1[u]*10 + j*dp2[u])%mod;
dp2[nst] = (dp2[nst] + dp2[u])%mod;
}
}
printf("%d\n", ans);
}
} sam;
char s[maxn], t[maxn];
int main() {
while(~scanf("%d", &T)) {
mes(s, 0);
n = 0;
while(T--) {
scanf("%s", t+1);
int tlen = strlen(t+1);
for(int i=1; i<=tlen; i++) {
s[++n] = t[i]-'0'+1;
}
s[++n] = 11;
}
sam.init();
for(int i=1; i<=n; i++) {
sam.insert(s[i]);
}
sam.solve();
}
return 0;
}
str2int HDU - 4436 (后缀自动机)的更多相关文章
- str2int HDU - 4436 后缀自动机求子串信息
题意: 给出 n 个串,求出这 n 个串所有子串代表的数字的和. 题解; 首先可以把这些串构建后缀自动机(sam.last=1就好了), 因为后缀自动机上从 root走到的任意节点都是一个子串,所有可 ...
- HDU 4436 (后缀自动机)
HDU 4436 str2int Problem : 给若干个数字串,询问这些串的所有本质不同的子串转换成数字之后的和. Solution : 首先将所有串丢进一个后缀自动机.由于这道题询问的是不同的 ...
- HDU 5442 后缀自动机(从环字符串选定一个位置 , 时针或顺时针走一遍,希望得到字典序最大)
http://acm.hdu.edu.cn/showproblem.php?pid=5442 题目大意: 给定一个字符串,可理解成环,然后选定一位置,逆时针或顺时针走一遍,希望得到字典序最大,如果同样 ...
- HDU 4622 (后缀自动机)
HDU 4622 Reincarnation Problem : 给一个串S(n <= 2000), 有Q个询问(q <= 10000),每次询问一个区间内本质不同的串的个数. Solut ...
- HDU 4416 (后缀自动机)
HDU 4416 Good Article Good sentence Problem : 给一个串S,和一些串T,询问S中有多少个子串没有在T中出现. Solution :首先对所有的T串建立后缀自 ...
- HDU 5442 后缀自动机+kmp
题目大意: 给定一个字符串,可理解成环,然后选定一位置,逆时针或顺时针走一遍,希望得到字典序最大,如果同样大,希望找到起始位置最小的,如果还相同,就默认顺时针 比赛一直因为处理最小位置出错,一结束就想 ...
- hdu 6208(后缀自动机、或者AC自动机
题意:给你n个字符串,问你是否存在一个字符串可以从中找到其他n-1个字符串. 思路:其实很简单,找到最长的那个字符串对他进行匹配,看是否能匹配到n-1个字符串. 可以用AC自动机或者后缀自动机做,但是 ...
- Boring counting HDU - 3518 后缀自动机
题意: 对于给出的字符串S, 长度不超过1000, 求其中本质不同的子串的数量, 这些子串满足在字符串S中出现了至少不重合的2次 题解: 将串放入后缀自动机中然后求出每一个节点对应的子串为后缀的子串出 ...
- Alice's Classified Message HDU - 5558 后缀自动机求某个后缀出现的最早位置
题意: 给定一个长度不超过 10W 的只包含小写字母的字符串,从下标 0 到 n−1.从下标 0 开始操作, 每次对于下标 pos查找下标 pos 开始的子串中最长的在其他地方出现过的长度,其他出现的 ...
随机推荐
- maven系列:deploy项目发布和上传repo仓库
在使用maven过程中,我们在开发阶段经常性的会有很多公共库处于不稳定状态,随时需要修改并发布,可能一天就要发布一次,遇到bug时,甚至一天要发布N次. 我们知道,maven的依赖管理是基于版本管理的 ...
- (三)Django继承AbstractUser新建User Model时出现fields.E304错误
错误详情: auth.User.groups: (fields.E304) Reverse accessor for ‘User.groups’ clashes with reverse access ...
- Codeforces Round #588 (Div. 1)
Contest Page 因为一些特殊的原因所以更得不是很及时-- A sol 不难发现当某个人diss其他所有人的时候就一定要被删掉. 维护一下每个人会diss多少个人,当diss的人数等于剩余人数 ...
- vue中使用radio和checkbox
代码 <template> <div id="app"> <input type="checkbox" v-model=" ...
- vuex简单化理解和安装使用
1.简单化理解 首先你要明白 vuex 的目的 就是为了 集中化的管理项目中 组件所有的 数据状态 (state) 0. 第一步你要明白 , store 的重要性 , store 类似一个中央基站, ...
- 基于elementUI创建的vue项目
这周对公司的内容使用vue进行重构,所以记录一下开始项目的过程 下载elementUI: 项目文件夹中在命令行中输入:npm install elementui -s 下载完成后在 main.js 中 ...
- 30、filter数组去重
eg: let arr=[1,0,0,9,7,7,5,2] let data=arr.filter((item,index,self)=> self.indexOf(item)===index ...
- PHPSocket.IO知识学习整理
一.服务端和客户端连接 1.创建一个SocketIO服务端 <?php require_once __DIR__ . '/vendor/autoload.php'; use Workerman\ ...
- Android-----创建SQLite数据库
简单介绍一下Android系统内置轻便又功能强大的嵌入式数据库--SQLite. SQLite是D.Richard Hipp用C语言编写的开源嵌入式数据库引擎,它是一款轻型的数据库,是遵守ACID的关 ...
- Solr基础理论【排名检索、查准率、查全率】
一.排名检索 搜索引擎代表了基于查询,返回优先文档的一种方法.在关系型数据库的SQL查询中,表的一行要么匹配一个查询,要么不匹配,查询结果基于一列或多列排序.搜索引擎根据文档与查询匹配的程度为文档打分 ...