E. Antenna Coverage (dp)
题意: 在一个一维坐标上,有 n 个东西, 每个东西, 用 xi, si 表示 这个东西在 xi 位置上,
它能覆盖到的区间为 [ xi - si, xi + si ];
然后, 你可以对任意的东西, 扩大它的 覆盖区间, 即对 si 加 1; 花费1;
问你 覆盖 [ 1, m ] 的最少花费。
n <= 80, m <= 100000;
解: 显然 DP;
我们用 dp[ i ] 表示 覆盖 i ~ m 的最少花费。
然后我们从 m ~ 1 枚举 x;
若这个x 被某个东西覆盖, 则 dp[ i ] = dp[ i + 1 ];
否则, 枚举 所有的 n 个东西, 判断 那些 xi - si 大于你当前枚举的那个 x 的东西。
那么你设 dis = xi - si - x; 即你到那个东西覆盖的区间的左端点的距离。
然后, 因为它左边扩了 dis, 那么它右边也可以扩 dis;
那么,答案就是 dis + dp[ xi + si + dis];
然后, 最后 dp[ 1 ] 就是答案了。
#include <bits/stdc++.h>
#define LL long long
#define INF 0x3f3f3f3f
using namespace std;
struct note {
int l, r;
}a[];
bool cmp(note a, note b) {
return a.l == b.l ? a.r < b.r : a.l < b.l;
}
const int N = 2e5 + ;
int dp[N];
int main() { int n, m; scanf("%d %d", &n, &m);
for(int i = ; i <= m; i++) dp[i] = INF;
int ma = ;
for(int i = ; i <= n; i++) {
int x, s; scanf("%d %d", &x, &s);
a[i].l = max(x - s, ); a[i].r = min(x + s, m);
ma = max(ma, a[i].r);
for(int j = a[i].l; j <= a[i].r; j++) {
dp[j] = ;
}
}
for(int i = m; i > ma; i--) dp[i] = m - i + ;
// n++; a[n].l = n; a[n].r = n;
sort(a + , a + + n, cmp);
dp[m + ] = ;
for(int i = m; i >= ; i--) {
if(dp[i] == ) dp[i] = dp[i + ];
else {
for(int j = ; j <= n; j++) {
if(a[j].l > i) {
int dis = a[j].l - i;
int R = min(a[j].r + dis, m);
dp[i] = min(dp[i], dis + dp[R + ]);
}
}
}
}
printf("%d\n", dp[]);
}
E. Antenna Coverage (dp)的更多相关文章
- CF1253E Antenna Coverage(DP)
本题难点在正确性证明. 令 \(f_i\) 表示 \([1,i]\) 被全部覆盖的最小花费.答案为 \(f_m\). 首先发现,添加一个区间 \([0,0]\) 不会影响答案.所以 \(f_i\) 的 ...
- LightOJ 1033 Generating Palindromes(dp)
LightOJ 1033 Generating Palindromes(dp) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid= ...
- lightOJ 1047 Neighbor House (DP)
lightOJ 1047 Neighbor House (DP) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87730# ...
- UVA11125 - Arrange Some Marbles(dp)
UVA11125 - Arrange Some Marbles(dp) option=com_onlinejudge&Itemid=8&category=24&page=sho ...
- 【POJ 3071】 Football(DP)
[POJ 3071] Football(DP) Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4350 Accepted ...
- 初探动态规划(DP)
学习qzz的命名,来写一篇关于动态规划(dp)的入门博客. 动态规划应该算是一个入门oier的坑,动态规划的抽象即神奇之处,让很多萌新 萌比. 写这篇博客的目标,就是想要用一些容易理解的方式,讲解入门 ...
- Python项目在Jenkins中的自动化测试实践(语法检查、单元测试,coverage(代码覆盖率)、自动打包)
原始链接:http://blog.csdn.net/a464057216/article/details/52934077 requirments OS: Ubuntu 14.04+ Gitlab 8 ...
- Tour(dp)
Tour(dp) 给定平面上n(n<=1000)个点的坐标(按照x递增的顺序),各点x坐标不同,且均为正整数.请设计一条路线,从最左边的点出发,走到最右边的点后再返回,要求除了最左点和最右点之外 ...
- 2017百度之星资格赛 1003:度度熊与邪恶大魔王(DP)
.navbar-nav > li.active > a { background-image: none; background-color: #058; } .navbar-invers ...
随机推荐
- CSP-S2019 自闭记
$Day0:$ 最后一场zr十连测从200挂到60,嘴上说着攒rp心里觉得药丸. 得知自己在本校考试感觉8错. $Day1:$ 早上7点50到了校门口,没让进QAQ早知道我再下一把棋了. 于是跟熊聊天 ...
- jar包部署脚本
部署一个名为xxx的jar包,输出到out.log,只需要准备以下脚本start.sh #!/bin/sh echo " =====关闭Java应用======" PROCESS= ...
- opencv常用数据结构
2019/10/29 1.Mat 成员函数:cols.rows.channels.ptr获取任意行的首地址.at处理像素 2.InputArray/OutArray相当于Mat 2019/11/4 1 ...
- Entity Framework 学习系列(2) - MySql Database First 开发方式
目录 写在前面 环境 下载MySQL连接工具 创建Databse First 1.创建控制台 2.创建数据库 3.安装 MySQL.Data 和MySQL.Data.Entity 3.在项目中添加数据 ...
- C# 创建json传输格式的http请求
public static string PostRequestTest(string content, string url, string contentType = "applicat ...
- 探索etcd,Zookeeper和Consul一致键值数据存储的性能
这篇博文是探索三个分布式.一致性键值数据存储软件性能的系列文章中的第一篇:etcd.Zookeeper和Consul,由etcd团队所写,可以让我们全面地了解如何评估三个分布式一致存储软件的性能.翻译 ...
- HeRaNO's NOIP CSP Round Day 2 T1 building
考试的时候居然睡着了... T1的60分做法很明显,3^n枚举每个状态并进行验证 (考试剩十分钟结束的时候我开始打,,不到五分钟就写完了? 暴力(60分) #include<bits/stdc+ ...
- tqdm()与set_description()的用法
pbar=tqdm(range(55156))for i in pbar: # print(i) a=464443161*845113131 pbar.set_description("tr ...
- Vue: 解决打包后element-ui图标字体不显示的问题
在build/utils.js下找到 if (options.extract) { return ExtractTextPlugin.extract({ use: loaders, fallback: ...
- HTML5 新增文本标签
一.mark 标记文本 <mark> 标签定义带有记号的文本,表示页面中需要突出显示或高亮显示的信息. 通常在引用原文的时候使用 mark 元素,目的是引起当前用户的注意. 语法格式: & ...