E. Antenna Coverage (dp)
题意: 在一个一维坐标上,有 n 个东西, 每个东西, 用 xi, si 表示 这个东西在 xi 位置上,
它能覆盖到的区间为 [ xi - si, xi + si ];
然后, 你可以对任意的东西, 扩大它的 覆盖区间, 即对 si 加 1; 花费1;
问你 覆盖 [ 1, m ] 的最少花费。
n <= 80, m <= 100000;
解: 显然 DP;
我们用 dp[ i ] 表示 覆盖 i ~ m 的最少花费。
然后我们从 m ~ 1 枚举 x;
若这个x 被某个东西覆盖, 则 dp[ i ] = dp[ i + 1 ];
否则, 枚举 所有的 n 个东西, 判断 那些 xi - si 大于你当前枚举的那个 x 的东西。
那么你设 dis = xi - si - x; 即你到那个东西覆盖的区间的左端点的距离。
然后, 因为它左边扩了 dis, 那么它右边也可以扩 dis;
那么,答案就是 dis + dp[ xi + si + dis];
然后, 最后 dp[ 1 ] 就是答案了。
#include <bits/stdc++.h>
#define LL long long
#define INF 0x3f3f3f3f
using namespace std;
struct note {
int l, r;
}a[];
bool cmp(note a, note b) {
return a.l == b.l ? a.r < b.r : a.l < b.l;
}
const int N = 2e5 + ;
int dp[N];
int main() { int n, m; scanf("%d %d", &n, &m);
for(int i = ; i <= m; i++) dp[i] = INF;
int ma = ;
for(int i = ; i <= n; i++) {
int x, s; scanf("%d %d", &x, &s);
a[i].l = max(x - s, ); a[i].r = min(x + s, m);
ma = max(ma, a[i].r);
for(int j = a[i].l; j <= a[i].r; j++) {
dp[j] = ;
}
}
for(int i = m; i > ma; i--) dp[i] = m - i + ;
// n++; a[n].l = n; a[n].r = n;
sort(a + , a + + n, cmp);
dp[m + ] = ;
for(int i = m; i >= ; i--) {
if(dp[i] == ) dp[i] = dp[i + ];
else {
for(int j = ; j <= n; j++) {
if(a[j].l > i) {
int dis = a[j].l - i;
int R = min(a[j].r + dis, m);
dp[i] = min(dp[i], dis + dp[R + ]);
}
}
}
}
printf("%d\n", dp[]);
}
E. Antenna Coverage (dp)的更多相关文章
- CF1253E Antenna Coverage(DP)
本题难点在正确性证明. 令 \(f_i\) 表示 \([1,i]\) 被全部覆盖的最小花费.答案为 \(f_m\). 首先发现,添加一个区间 \([0,0]\) 不会影响答案.所以 \(f_i\) 的 ...
- LightOJ 1033 Generating Palindromes(dp)
LightOJ 1033 Generating Palindromes(dp) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid= ...
- lightOJ 1047 Neighbor House (DP)
lightOJ 1047 Neighbor House (DP) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87730# ...
- UVA11125 - Arrange Some Marbles(dp)
UVA11125 - Arrange Some Marbles(dp) option=com_onlinejudge&Itemid=8&category=24&page=sho ...
- 【POJ 3071】 Football(DP)
[POJ 3071] Football(DP) Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 4350 Accepted ...
- 初探动态规划(DP)
学习qzz的命名,来写一篇关于动态规划(dp)的入门博客. 动态规划应该算是一个入门oier的坑,动态规划的抽象即神奇之处,让很多萌新 萌比. 写这篇博客的目标,就是想要用一些容易理解的方式,讲解入门 ...
- Python项目在Jenkins中的自动化测试实践(语法检查、单元测试,coverage(代码覆盖率)、自动打包)
原始链接:http://blog.csdn.net/a464057216/article/details/52934077 requirments OS: Ubuntu 14.04+ Gitlab 8 ...
- Tour(dp)
Tour(dp) 给定平面上n(n<=1000)个点的坐标(按照x递增的顺序),各点x坐标不同,且均为正整数.请设计一条路线,从最左边的点出发,走到最右边的点后再返回,要求除了最左点和最右点之外 ...
- 2017百度之星资格赛 1003:度度熊与邪恶大魔王(DP)
.navbar-nav > li.active > a { background-image: none; background-color: #058; } .navbar-invers ...
随机推荐
- 用LabVIEW实现《家国梦》游戏中自动收货收金币
前几周,很流行一个手机游戏,叫<家国梦>.我在手机上玩了一两天后,发现了两个问题: 1. 收货收金币太没意思,只需要手指滑在固定的路线,一会儿就烦了 2. 怎么追赶也追不上手快的人(当然也 ...
- log4net自动删除日志文件
晚上关于删除的日志文件主要有 https://blog.csdn.net/hellolib/article/details/78316253, 其实我这里的实现方式和他差不多,不过我这里不用配置时间, ...
- cocos2d设置窗口标题
//窗口标题 #ifdef WIN32 CCEGLView* pGlView=CCDirector::sharedDirector()->getOpenGLView(); if (pGlView ...
- DispatcherServlet 是 spring 网络模块的核心
https://cn.bing.com/images/search?q=DispatcherServlet+&FORM=HDRSC2
- 前端自动显示信息的小demo
效果: //来到这个页面立即请求,展示客户公司名称 $(function () { $.ajax({ type:"GET", url:"${pageContext.req ...
- 【Kafka】Exactly Once语义与事务
Kafka在0.11.0.0之前的版本中只支持At Least Once和At Most Once语义,尚不支持Exactly Once语义. 但是在很多要求严格的场景下,如使用Kafka处理交易数据 ...
- 【开发笔记】-通过js控制input禁止输入空格
<input type="text" id="fname" onkeyup="myFunction(id)"> <scri ...
- 【转载】C#中使用Insert方法往ArrayList集合指定索引位置插入新数据
ArrayList集合是C#中的一个非泛型的集合类,是弱数据类型的集合类,可以使用ArrayList集合变量来存储集合元素信息,在ArrayList集合操作过程中,可以使用ArrayList集合类的I ...
- JS调用栈的一些总结
原文地址 调用栈 调用栈是解释器追踪函数执行流的一种机制.当执行环境中调用了多个函数函数时,通过这种机制,我们能够追踪到哪个函数正在执行,执行的函数体中又调用了哪个函数. 我们知道JavaScript ...
- 93.vue---在vue环境用webuploader分片上传插件遇到的超级bug(独家仅此一份)
本来我是想想用vue-simple-uploader (https://www.cnblogs.com/xiahj/p/vue-simple-uploader.html)的 但是公司后台已经做好了we ...