原文链接www.cnblogs.com/zhouzhendong/p/UOJ469.html

前言

clytql当场秒掉此题可惜不知道为什么fst了。

题解

考虑构建指数生成函数。

对于第 \(i\) 项,设其概率为 \(p_i\) (即题目中的 \(p_i / \sum_i p_i\)) 。构建指数生成函数:

\[f_i(x) = \sum_{j\geq 0, j\bmod 2 = s_i} p_i ^ j \frac {x^ j } { j !} \\ = \frac 1 2 (e ^ {p_i x } + (-1)^{s_i} e ^ {-p_i x })
\]

\(F(x) = \prod_i f_i(x) ,f(x) = \sum_{i} i! [x^i]F(x)\) 的 \(k\) 次项系数就是随机按 \(k\) 次开关到达指定状态的概率。

我们要求的是第一次到达指定状态的概率,所以我们需要将多项式 \(f(x)\) 除去"\(s_i\) 全为 0 时的多项式 \(g(x)\)"。

我们要算的是期望,所以我们要求的是

\[\frac{\rm d} { {\rm d} x } \left ( \frac {f(x)}{g(x)}\right )
\]

的各个系数之和。注意由于我们在求 \(f(x)\)、\(g(x)\) 时,就已经乘了一个阶乘将指数生成函数转化成对应的普通生成函数了。因为我们要除去的方案是从终止状态出发再回到终止状态的方案数(OGF),而不是在到达终止状态之前绕一圈的方案数(如果除以EGF)。

由于

\[\cfrac{\rm d} { {\rm d} x } \left ( \cfrac {f(x)}{g(x)} \right ) = \cfrac{f'(x) g(x) - g'(x) f(x) }{g ^ 2(x)}
\]

于是,我们来对每一个项考虑一下:

\[e ^ {kx} = \sum_{i\geq 0 } k ^ i \frac { x ^ i } { i ! }
\]

\[\sum_{i\geq 0} k ^ i x ^ i= \frac{1}{1 - kx}
\]

\[\frac{\rm d} { {\rm d} x } e ^ {kx} = k ^ 2 x e ^ {kx} = k ^ 2 x \sum_{i\geq 0 } k ^ i \frac { x ^ i } { i ! }
\]

\[\sum_{i\geq 1} k ^ {i+1} i \cdot x ^ i = \frac {k} { (1-kx) ^ 2}
\]

接下来我们把 \(x = 1\) 代入求解。

考虑到当 \(k = 1\) 时我们会得到 NAN,这导致了求解失败。

但是我们显然可以肯定答案不是 NAN。那么发生了什么?

之前提到,答案是

\[\cfrac{f'(x) g(x) - g'(x) f(x) }{g ^ 2(x)}
\]

我们只需要将分子分母上下同乘 \((1-kx) ^ 2\) 。

注意到 \(g^2(x)\) 里面有 \(\cfrac {1}{(1-kx) ^ 2}\) ,但是 $f'(x) g(x) $ 和 \(f(x)g'(x)\) 里面都有 \(\cfrac {1}{(1-kx) ^ 3}\) ,看起来似乎又是 NAN。注意到 $f'(x) g(x) $ 和 \(f(x)g'(x)\) 里面的 \(\cfrac {1}{(1-kx) ^ 3}\) 项在减法时抵消了,所以没有影响。

总时间复杂度 \(O(n \sum{p_ i} )\) 。

代码

#include <bits/stdc++.h>
#define clr(x) memset(x,0,sizeof x)
#define For(i,a,b) for (int i=(a);i<=(b);i++)
#define Fod(i,b,a) for (int i=(b);i>=(a);i--)
#define fi first
#define se second
#define pb(x) push_back(x)
#define mp(x,y) make_pair(x,y)
#define outval(x) cerr<<#x" = "<<x<<endl
#define outtag(x) cerr<<"---------------"#x"---------------"<<endl
#define outarr(a,L,R) cerr<<#a"["<<L<<".."<<R<<"] = ";\
For(_x,L,R)cerr<<a[_x]<<" ";cerr<<endl;
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef vector <int> vi;
LL read(){
LL x=0,f=0;
char ch=getchar();
while (!isdigit(ch))
f|=ch=='-',ch=getchar();
while (isdigit(ch))
x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
return f?-x:x;
}
const int N=105,S=1e5+10,mod=998244353;
int Pow(int x,int y){
int ans=1;
for (;y;y>>=1,x=(LL)x*x%mod)
if (y&1)
ans=(LL)ans*x%mod;
return ans;
}
void Add(int &x,int y){
if ((x+=y)>=mod)
x-=mod;
}
void Del(int &x,int y){
if ((x-=y)<0)
x+=mod;
}
int Add(int x){
return x>=mod?x-mod:x;
}
int Del(int x){
return x<0?x+mod:x;
}
int inv2=(mod+1)>>1;
int n;
int s[N],p[N],sum=0,invs;
int f[S],g[S],val[S],inv[N],O=5e4+5;
int ans=0;
void Get(int *a){
static int b[S];
For(i,-sum,sum){
a[i+O]=0;
val[i+O]=(LL)Del(i)*invs%mod;
inv[i+O]=Pow(Del(1-val[i+O]),mod-2);
}
a[0+O]=1;
For(i,1,n){
For(j,-sum,sum)
b[j+O]=0;
For(j,-sum,sum){
if (!a[j+O])
continue;
Add(b[j+p[i]+O],a[j+O]);
if (s[i])
Del(b[j-p[i]+O],a[j+O]);
else
Add(b[j-p[i]+O],a[j+O]);
}
For(j,-sum,sum)
a[j+O]=b[j+O];
}
}
int calc1(int *a,int *b){
// a' * b * (1 - x) ^ 2
int ans=0;
For(i,-sum,sum-1)
Add(ans,(LL)b[i+O]*inv[i+O]%mod);
ans=(LL)ans*a[sum+O]%mod;
return ans;
}
int calc2(int *a){
return (LL)a[sum+O]*a[sum+O]%mod;
}
int main(){
n=read();
For(i,1,n)
s[i]=read();
For(i,1,n)
p[i]=read(),sum+=p[i];
invs=Pow(sum,mod-2);
Get(f),clr(s),Get(g);
Add(ans,calc1(f,g));
Del(ans,calc1(g,f));
ans=(LL)ans*Pow(calc2(g),mod-2)%mod;
cout<<ans<<endl;
return 0;
}

UOJ#469. 【ZJOI2019】开关 生成函数的更多相关文章

  1. [ZJOI2019] 开关 (一种扩展性较高的做法)

    [ZJOI2019] 开关 (一种扩展性较高的做法) 题意: 有n个开关,一开始状态都为关闭.每次随机选出一个开关将其状态改变,选出第i个开关的概率为${ p_i \over \sum_{i=1}^n ...

  2. [ZJOI2019]开关(生成函数+背包DP)

    注:以下p[i]均表示概率 设F(x)为按i次开关后到达终止状态方案数的EGF,显然F(x)=π(ep[i]x/p+(-1)s[i]e-p[i]x/p)/2,然而方案包含一些多次到达合法方案的状态,需 ...

  3. [ZJOI2019]开关

    以下的方案数默认是带权方案数.设\(P=\sum_{i=1}^np_i\). 设\(F(x)\)为按\(i\)次开关后到达终止态的方案数的EGF,\(f\)为\(F\)的OGF,显然\(F(x)=\p ...

  4. 【UOJ#450】【集训队作业2018】复读机(生成函数,单位根反演)

    [UOJ#450][集训队作业2018]复读机(生成函数,单位根反演) 题面 UOJ 题解 似乎是\(\mbox{Anson}\)爷的题. \(d=1\)的时候,随便怎么都行,答案就是\(k^n\). ...

  5. Loj #3045. 「ZJOI2019」开关

    Loj #3045. 「ZJOI2019」开关 题目描述 九条可怜是一个贪玩的女孩子. 这天,她和她的好朋友法海哥哥去玩密室逃脱.在他们面前的是 \(n\) 个开关,开始每个开关都是关闭的状态.要通过 ...

  6. LOJ 3045: 洛谷 P5326: 「ZJOI2019」开关

    题目传送门:LOJ #3045. 题意简述 略. 题解 从高斯消元出发好像需要一些集合幂级数的知识,就不从这个角度思考了. 令 \(\displaystyle \dot p = \sum_{i = 1 ...

  7. UOJ#450. 【集训队作业2018】复读机 排列组合 生成函数 单位根反演

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ450.html 题解 首先有一个东西叫做“单位根反演”,它在 FFT 的时候用到过: $$\frac 1 ...

  8. uoj#335. 【清华集训2017】生成树计数(prufer序列+生成函数+多项式)

    传送门 好神仙的题目--又一次有了做一题学一堆的美好体验 据说本题有第二类斯特林数+分治\(FFT\)的做法,然而咱实在看不懂写的是啥,题解贴这里,有兴趣的可以自己去瞅瞅,看懂了记得回来跟咱讲讲 前置 ...

  9. 【loj3045】【ZJOI2019】开关

    题目 \(n\)个开关,一开始处于关闭状态,你需要将他们按成\(s\)状态,按成了之后就停止操作; 每次按下开关的i概率为\(\frac{p_i}{\sum_{i=1}^{n}p_i}\) ,问期望步 ...

随机推荐

  1. 树莓派Raspbian系统格式化挂载硬盘

    1.查看树莓派系统挂载的储存设备 使用工具查看系统识别到的硬盘设备,命令: fdisk -l /dev/sda 和 /dev/sdb  分别是两块硬盘. 2.修改硬盘分区 Linux和windows一 ...

  2. ASP.NET Core 入门(2)(WebApi接口请求日志 Request和Response)

    以前 .NET Framework WebApi 记录接口访问日志,一般是通过Filter的方式进行拦截,通过重写ActionFilterAttribute的OnActionExecuting实现拦截 ...

  3. ADO.NET 二(Connection)

    C# 语言中 Connection 类是 ADO.NET 组件连接数据库时第一个要使用的类,也是通过编程访问数据库的第一步. 接下来了解一下 Connection 类中的常用属性和方法,以及如何连接 ...

  4. C语言的三套标准 C89(C90)、C99、C11

    C语言最初由 Dennis Ritchie 于 1969 年到 1973 年在 AT&T 贝尔实验室里开发出来,主要用于重新实现 Unix 操作系统.此时,C语言又被称为 K&R C. ...

  5. redis被攻击,怎么预防

    今天,自己的redis服务器被黑客攻击了,数据全部被删除 从图中可以看到,在db0中多了一个crackit,他就是罪魁祸首,他的值就是ssh无密码连接时需要的authorized_keys. 我们被攻 ...

  6. [新手必备]Python 基础入门必学知识点笔记

    Python 作为近几年越来越流行的语言,吸引了大量的学员开始学习,为了方便新手小白在学习过程中,更加快捷方便的查漏补缺.根据网上各种乱七八糟的资料以及实验楼的 Python 基础内容整理了一份极度适 ...

  7. Linux常用时间函数

    time()函数: NAME time - get time in seconds SYNOPSIS #include <time.h> time_t time(time_t *tloc) ...

  8. 科普文:Node.js 如何上传文件到后端服务【转】

    原文链接 https://www.yuque.com/egg/nodejs/httpclient-upload 背景 互联网时代,无数服务是基于 HTTP 协议进行通信的. 除了常见的 前端浏览器 - ...

  9. python统计代码总行数(代码行、空行、注释行)

    我们在工作或学习代码的过程中,经常会想知道自己写了多少行代码,今天在项目环境写了个脚本统计了项目代码的数量. 功能: 1.统计代码总行数 2.统计空行数 3.统计注释行数 # coding=utf-8 ...

  10. P2015 二叉苹果树[树形dp+背包]

    题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 我们用一根树枝两端连接的结点的编号来 ...