In this problem, a rooted tree is a directed graph such that, there is exactly one node (the root) for which all other nodes are descendants of this node, plus every node has exactly one parent, except for the root node which has no parents.

The given input is a directed graph that started as a rooted tree with N nodes (with distinct values 1, 2, ..., N), with one additional directed edge added. The added edge has two different vertices chosen from 1 to N, and was not an edge that already existed.

The resulting graph is given as a 2D-array of edges. Each element of edges is a pair [u, v] that represents a directed edge connecting nodes u and v, where u is a parent of child v.

Return an edge that can be removed so that the resulting graph is a rooted tree of N nodes. If there are multiple answers, return the answer that occurs last in the given 2D-array.

Example 1:

Input: [[1,2], [1,3], [2,3]]
Output: [2,3]
Explanation: The given directed graph will be like this:
1
/ \
v v
2-->3

Example 2:

Input: [[1,2], [2,3], [3,4], [4,1], [1,5]]
Output: [4,1]
Explanation: The given directed graph will be like this:
5 <- 1 -> 2
^ |
| v
4 <- 3

Note:

  • The size of the input 2D-array will be between 3 and 1000.
  • Every integer represented in the 2D-array will be between 1 and N, where N is the size of the input array.

这道题是之前那道 Redundant Connection 的拓展,那道题给的是无向图,只需要删掉组成环的最后一条边即可,归根到底就是检测环就行了。而这道题给的是有向图,整个就复杂多了,因为有多种情况存在,比如给的例子1就是无环,但是有入度为2的结点3。再比如例子2就是有环,但是没有入度为2的结点。其实还有一种情况例子没有给出,就是既有环,又有入度为2的结点。好,现在就来总结一下这三种情况:

第一种:无环,但是有结点入度为2的结点(结点3)

[[1,2], [1,3], [2,3]]

 / \
v v
-->

第二种:有环,没有入度为2的结点

[[1,2], [2,3], [3,4], [4,1], [1,5]]

 <-  ->
^ |
| v
<-

第三种:有环,且有入度为2的结点(结点1)

[[1,2],[2,3],[3,1],[1,4]]

    /
v / ^
v \
-->

对于这三种情况的处理方法各不相同,首先对于第一种情况,返回的产生入度为2的后加入的那条边 [2, 3],而对于第二种情况,返回的是刚好组成环的最后加入的那条边 [4, 1],最后对于第三种情况返回的是组成环,且组成入度为2的那条边 [3, 1]。

明白了这些,先来找入度为2的点,如果有的话,那么将当前产生入度为2的后加入的那条边标记为 second,前一条边标记为 first。然后来找环,为了方便起见,找环使用联合查找 Union Find 的方法,可参见 Redundant Connection 中的解法三。当找到了环之后,如果 first 不存在,说明是第二种情况,返回刚好组成环的最后加入的那条边。如果 first 存在,说明是第三种情况,返回 first。如果没有环存在,说明是第一种情况,返回 second,参见代码如下:

class Solution {
public:
vector<int> findRedundantDirectedConnection(vector<vector<int>>& edges) {
int n = edges.size();
vector<int> root(n + , ), first, second;
for (auto& edge : edges) {
if (root[edge[]] == ) {
root[edge[]] = edge[];
} else {
first = {root[edge[]], edge[]};
second = edge;
edge[] = ;
}
}
for (int i = ; i <= n; ++i) root[i] = i;
for (auto& edge : edges) {
if (edge[] == ) continue;
int x = getRoot(root, edge[]), y = getRoot(root, edge[]);
if (x == y) return first.empty() ? edge : first;
root[x] = y;
}
return second;
}
int getRoot(vector<int>& root, int i) {
return i == root[i] ? i : getRoot(root, root[i]);
}
};

讨论:使用联合查找 Union Find 的方法一般都需要写个子函数,来查找祖宗结点,上面的解法 getRoot() 函数就是这个子函数,使用递归的形式来写的,其实还可以用迭代的方式来写,下面这两种写法都可以:

int getRoot(vector<int>& root, int i) {
while (i != root[i]) {
root[i] = root[root[i]];
i = root[i];
}
return i;
}
int getRoot(vector<int>& root, int i) {
while (i != root[i]) i = root[i];
return i;
}

Github 同步地址:

https://github.com/grandyang/leetcode/issues/685

类似题目:

Redundant Connection

Friend Circles

Accounts Merge

Number of Islands II

Graph Valid Tree

Number of Connected Components in an Undirected Graph

Similar String Groups

参考资料:

https://leetcode.com/problems/redundant-connection-ii/

https://leetcode.com/problems/redundant-connection-ii/discuss/108045/C++Java-Union-Find-with-explanation-O(n)

https://leetcode.com/problems/redundant-connection-ii/discuss/108058/one-pass-disjoint-set-solution-with-explain

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] 685. Redundant Connection II 冗余的连接之二的更多相关文章

  1. [LeetCode] 685. Redundant Connection II 冗余的连接之 II

    In this problem, a rooted tree is a directed graph such that, there is exactly one node (the root) f ...

  2. [LeetCode] Redundant Connection II 冗余的连接之二

    In this problem, a rooted tree is a directed graph such that, there is exactly one node (the root) f ...

  3. LeetCode 685. Redundant Connection II

    原题链接在这里:https://leetcode.com/problems/redundant-connection-ii/ 题目: In this problem, a rooted tree is ...

  4. [LeetCode] 684. Redundant Connection 冗余的连接

    In this problem, a tree is an undirected graph that is connected and has no cycles. The given input ...

  5. [LeetCode] Number of Islands II 岛屿的数量之二

    A 2d grid map of m rows and n columns is initially filled with water. We may perform an addLand oper ...

  6. LN : leetcode 684 Redundant Connection

    lc 684 Redundant Connection 684 Redundant Connection In this problem, a tree is an undirected graph ...

  7. [Swift]LeetCode685. 冗余连接 II | Redundant Connection II

    In this problem, a rooted tree is a directed graph such that, there is exactly one node (the root) f ...

  8. LeetCode 684. Redundant Connection 冗余连接(C++/Java)

    题目: In this problem, a tree is an undirected graph that is connected and has no cycles. The given in ...

  9. leetcode 684. Redundant Connection

    We are given a "tree" in the form of a 2D-array, with distinct values for each node. In th ...

随机推荐

  1. mysql增加索引、删除索引、查看索引

    添加索引 有四种方式来添加数据表的索引: 1.添加一个主键,这意味着索引值必须是唯一的,且不能为NULL ALTER TABLE tbl_name ADD PRIMARY KEY (column_li ...

  2. touch.js - 移动设备上的手势识别与事件库

    Touch.js 是移动设备上的手势识别与事件库, 由百度云Clouda团队维护,也是在百度内部广泛使用的开发工具.Touch.js手势库专为移动设备设计.Touch.js对于网页设计师来说,是一款不 ...

  3. How-important-is-deep-learning-in-autonomous-driving

    Deep learning (DL) is a very interesting technology indeed and yes it does solve perception really w ...

  4. datalab (原发布 csdn 2018年09月21日 20:42:54)

    首先声明datalab本人未完成,有4道题目没有做出来.本文博客记录下自己的解析,以便以后回忆.如果能帮助到你就更好了,如果觉得本文没啥技术含量,也望多多包涵. /* * bitAnd - x& ...

  5. C# in 参数修饰符

    in 修饰符记录: 新版C# 新增加的 in 修饰符:保证发送到方法当中的数据不被更改(值类型),当in 修饰符用于引用类型时,可以改变变量的内容,单不能更改变量本身. 个人理解:in 修饰符传递的数 ...

  6. preventDefault, stopPropagation, return false -JS事件处理中的坑

    我们以一个文件上传ui重设计为例子来探讨这几个函数的区别: 其中的html代码如下: <div class="file-upload"> <input type= ...

  7. 初识Android App自动化测试框架--Unittest

    1.为什么需要使用框架实现自动化测试 作为测试工程师,可能在代码能力上相比开发工程师要弱一点,所以我们在写脚本的时候就会相对容易的碰到更多的问题,如果有一个成熟的框架供给我们使用的话,可以帮助我们避免 ...

  8. Winform中使用FastReport的PictureObject时通过代码设置图片源并使Image图片旋转90度

    场景 FastReport安装包下载.安装.去除使用限制以及工具箱中添加控件: https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/details/10 ...

  9. Vue.js 源码分析(七) 基础篇 侦听器 watch属性详解

    先来看看官网的介绍: 官网介绍的很好理解了,也就是监听一个数据的变化,当该数据变化时执行我们的watch方法,watch选项是一个对象,键为需要观察的数据名,值为一个表达式(函数),还可以是一个对象, ...

  10. 如何在linux CentOS 上安装chrome 谷歌浏览器?

    获得linux命令的root权限:http://blog.csdn.net/mddy2001/article/details/76521101. 更改密码在终端中输入:sudo passwd root ...