洛谷 P2512 [HAOI2008]糖果传递 题解
每日一题 day47 打卡
Analysis
首先,最终每个小朋友的糖果数量可以计算出来,等于糖果总数除以n,用ave表示。
假设标号为i的小朋友开始有Ai颗糖果,Xi表示第i个小朋友给了第i-1个小朋友Xi颗糖果,如果Xi<0,说明第i-1个小朋友给了第i个小朋友Xi颗糖果,X1表示第一个小朋友给第n个小朋友的糖果数量。 所以最后的答案就是ans=|X1| + |X2| + |X3| + ……+ |Xn|。 对于第一个小朋友,他给了第n个小朋友X1颗糖果,还剩A1-X1颗糖果;但因为第2个小朋友给了他X2颗糖果,所以最后还剩A1-X1+X2颗糖果。根据题意,最后的糖果数量等于ave,即得到了一个方程:A1-X1+X2=ave。
同理,对于第2个小朋友,有A2-X2+X3=ave。最终,我们可以得到n个方程,一共有n个变量,但是因为从前n-1个方程可以推导出最后一个方程,所以实际上只有n-1个方程是有用的。
尽管无法直接解出答案,但可以用X1表示出其他的Xi,那么本题就变成了单变量的极值问题。
对于第1个小朋友,A1-X1+X2=ave -> X2=ave-A1+X1 = X1-C1(假设C1=A1-ave,下面类似)
对于第2个小朋友,A2-X2+X3=ave -> X3=ave-A2+X2=2ave-A1-A2+X1=X1-C2
对于第3个小朋友,A3-X3+X4=ave -> X4=ave-A3+X3=3ave-A1-A2-A3+X1=X1-C3
…… 对于第n个小朋友,An-Xn+X1=ave。
我们希望Xi的绝对值之和尽量小,即|X1| + |X1-C1| + |X1-C2| + ……+ |X1-Cn-1|要尽量小。注意到|X1-Ci|的几何意义是数轴上的点X1到Ci的距离,所以问题变成了:给定数轴上的n个点,找出一个到他们的距离之和尽量小的点,而这个点就是这些数中的中位数,证明略。
By ysner
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define int long long
#define maxn 1000000+10
#define rep(i,s,e) for(register int i=s;i<=e;++i)
#define dwn(i,s,e) for(register int i=s;i>=e;--i)
using namespace std;
inline int read()
{
int x=,f=;
char c=getchar();
while(c<''||c>'') {if(c=='-') f=-; c=getchar();}
while(c>=''&&c<='') {x=x*+c-''; c=getchar();}
return f*x;
}
inline void write(int x)
{
if(x<) {putchar('-'); x=-x;}
if(x>) write(x/);
putchar(x%+'');
}
int n,ave,mid,ans;
int a[maxn],b[maxn];
signed main()
{
n=read();
rep(i,,n) {a[i]=read(); ave+=a[i];}
ave/=n;
rep(i,,n) b[i]=b[i-]+ave-a[i];
sort(b+,b+n+);
mid=b[n/+];
rep(i,,n) ans+=abs(b[i]-mid);
write(ans);
return ;
}
请各位大佬斧正(反正我不认识斧正是什么意思)
洛谷 P2512 [HAOI2008]糖果传递 题解的更多相关文章
- [bzoj1045] [洛谷P2512] [HAOI2008] 糖果传递
Description 有n个小朋友坐成一圈,每人有ai个糖果.每人只能给左右两人传递糖果.每人每次传递一个糖果代价为1. Input 第一行一个正整数nn<=1'000'000,表示小朋友的个 ...
- 洛谷P2512 [HAOI2008]糖果传递
//不开long long见祖宗!!! #include<bits/stdc++.h> using namespace std; long long n,ans,sum; ],s[]; i ...
- P2512 [HAOI2008]糖果传递&&P3156 [CQOI2011]分金币&&P4016 负载平衡问题
P2512 [HAOI2008]糖果传递 第一步,当然是把数据减去平均数,然后我们可以得出一串正负不等的数列 我们用sum数组存该数列的前缀和.注意sum[ n ]=0 假设为链,那么可以得出答案为a ...
- P2512 [HAOI2008]糖果传递
题目描述 有n个小朋友坐成一圈,每人有ai个糖果.每人只能给左右两人传递糖果.每人每次传递一个糖果代价为1. 输入输出格式 输入格式: 小朋友个数n 下面n行 ai 输出格式: 求使所有人获得均等糖果 ...
- 洛谷 4290 [HAOI2008]玩具取名 题解
P4290 [HAOI2008]玩具取名 题目描述 某人有一套玩具,并想法给玩具命名.首先他选择WING四个字母中的任意一个字母作为玩具的基本名字.然后他会根据自己的喜好,将名字中任意一个字母用&qu ...
- (洛谷P2512||bzoj1045) [HAOI2008]糖果传递 || 洛谷P4016 负载平衡问题 || UVA11300 Spreading the Wealth || (洛谷P3156||bzoj3293) [CQOI2011]分金币
bzoj1045 洛谷P4016 洛谷P2512 bzoj3293 洛谷P3156 题解:https://www.luogu.org/blog/LittleRewriter/solution-p251 ...
- P2512 【一本通提高篇贪心】「一本通 1.1 练习 6」[HAOI2008]糖果传递
[HAOI2008]糖果传递 题目描述 有 n n n 个小朋友坐成一圈,每人有 a i a_i ai 个糖果.每人只能给左右两人传递糖果.每人每次传递一个糖果代价为 1 1 1. 输入格式 小朋友 ...
- 【BZOJ1045】[HAOI2008]糖果传递
[BZOJ1045][HAOI2008]糖果传递 题面 bzoj 洛谷 题解 根据题意,我们可以很容易地知道最后每个人的糖果数\(ave\) 设第\(i\)个人给第\(i-1\)个人\(X_i\)个糖 ...
- BZOJ 1045: [HAOI2008] 糖果传递 数学
1045: [HAOI2008] 糖果传递 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1045 Description 有n个小朋友坐 ...
随机推荐
- 【转】ISE——完整工程的建立
FPGA公司主要是两个Xilinx和Altera(现intel PSG),我们目前用的ISE是Xilinx的开发套件,现在ISE更新到14.7已经不更新了,换成了另一款开发套件Vivado,也是Xil ...
- python_封装redis_hash方法
xshell 进入 虚拟环境 安装 redis workon py3env # 进入虚拟环境 pip install redis # 安装redis deactivate # 退出虚拟环境 简单的封装 ...
- CF891E Lust 生成函数
传送门 设在某一次操作之后的\(a\)数组变为了\(a'\)数组,那么\(\prod\limits_{i \neq x} a_i = \prod a_i - \prod a_i'\).那么就不难发现我 ...
- php中的for循环和js中的for循环
php中的for循环 循环100个0 for ($i=0;$i<=100;$i++){ $pnums.='0'.","; } js中的for循环,循环31个相同的数.循环日期 ...
- System.Web.NullPointerException
在.Net异步webApi中我们需要记录日志信息,需要获取客户端的ip地址,我们需要使用:HttpContext.Current.Request.ServerVariables["REMOT ...
- DIV中的文字垂直并且水平居中的CSS
.MsgPopup { height: 100px; line-height: 100px; text-align: center;}
- 2019-07-25 PDO
PDO是什么? pdo是php数据对象,即php data object .使用pdo是为了让我们能够使用相同的代码连接不同的数据库.PDO扩展是以面向对象的方式来进行封装,也就是说,我们的PDO扩展 ...
- 解决centos7下 selenium报错--unknown error: DevToolsActivePort file doesn't exist
解决centos7下 selenium报错--unknown error: DevToolsActivePort file doesn't exist 早上在linux下用selenium启动Chro ...
- VUE回顾基础3
1.方法 在vue模板里函数被定义为方法来使用,将函数放在methods对象里,作为一个属性,就可以在模板里使用它 this:在方法中this指向该方法所属的组件,可以使用this方文档data对象的 ...
- 基于MUI框架+HTML5PLUS 开发 iOS和Android 应用程序(APP)
目录 事前准备 创建项目 利用MUI写一个简单的页面 关于文件打包 事前准备 # 软件 HBuilder X Web开发IDE 下载地址:https://www.dcloud.io/hbuilderx ...