Bell数入门
贝尔数
贝尔数是以埃里克·坦普尔·贝尔命名,是组合数学中的一组整数数列,开首是(OEIS的A000110数列):
$$B_0 = 1, B_1 = 1, B_2 = 2, B_3 = 5, B_4 = 15, B_5 = 52, B_6 = 203, ...$$
$B_n$ 的含义是基数为 $n$ 的集合划分成非空集合的划分数。
例如, $B_3=5$ 是因为3个元素的集合有5种划分方法:
{{a}, {b}, {c}}
{{a}, {b, c}}
{{b}, {a, c}}
{{c}, {a, b}}
{{a, b, c}};
贝尔数有递推公式:
$$\displaystyle B_{n+1} = \sum_{k=0}^n\binom{n}{k}B_k$$
上述组合公式的证明:
可以这样来想,$B_{n+1}$ 是含有 $n+1$ 个元素集合的划分个数,考虑元素 $b_{n+1}$,
假设他被单独划分到一类,那么还剩下n个元素,这种情况下划分个数为 $\binom{n}{n}B_n$
假设他和某一个元素被划分为一类,那么还剩下n-1个元素,这种情况下划分个数为 $\binom{n}{n-1}B_{n-1}$
假设他和某两个元素被划分为一类,那么还剩下n-2个元素,这种情况下划分个数为 $\binom{n}{n-2}B_{n-2}$,
依次类推,得到了上述组合公式
它们也适合“Dobinski公式”:
$\displaystyle B_n = \frac{1}{e}\sum_{k=0}^{\infty}\frac{k^n}{k!}$
即期望值为1 的泊松分布的 $n$ 次矩。
它们也适合"Touchard同余":若 $p$ 是任意素数,那么
$$B_{p+n} = B_n + B_{n+1}$$
$$B_{p^m+n} = mB_n + B_{n+1}$$
贝尔数模素数 $p$ 的周期为:
$$T_p = \frac{p^p-1}{p-1}$$
每个贝尔数都是相应第二类斯特林数的和
$$\displaystyle B_n = \sum_{k=0}^nS(n, k)$$
因为,第二类斯特林数 $S(n, k)$ 是把基数为 $n$ 的集合划分为正好 $k$ 个非空集合的方案数。
此外,贝尔数的指数型母函数是
$$\displaystyle \sum_{n=0}^{\infty }\frac{B_n}{n!}x^n = e^{e^x-1}$$
贝尔三角形
用以下方法建构一个三角矩阵(形式类似杨辉三角形):
- 第一行第一项为1($a_{1,1}=1$)
- 对于 $n>1$,第 $n$ 行第一项等于第 $n-1$ 项的最后一项($a_{n,1} = a_{n-1, n-1}$)
- 对于 $m,n>1$,第 $n$ 行第 $m$ 项等于它左边和左上两个数之和($a_{n,m} = a_{n, m-1} + a_{n-1, m-1}$)
结果如下:(OEIS:A011971)

每行首项是贝尔数。每行之和是第二类Stirling数。
可以利用这个三角形来求Bell数,
#include<bits/stdc++.h>
using namespace std; const int maxn = +;
const int mod = ; //周期为13
int bell[maxn], T[maxn]; void Bell(int n, int mod) //求前n项Bell数
{
bell[] = bell[] = ;
T[] = ;T[] = ;
for(int i = ;i <= n;i++)
{
T[i-] = bell[i-];
for(int j = i-;j >= ;j--) //滚动数组
T[j] = (T[j] + T[j+]) % mod;
bell[i] = T[];
}
} int main()
{
Bell(, mod);
for(int i = ;i < ;i++)
printf("%d%c", bell[i], (i+)% == ? '\n' : ' ');
}
参考链接:
1. https://zh.wikipedia.org/w/index.php?title=%E8%B4%9D%E5%B0%94%E6%95%B0
2. https://blog.csdn.net/ACdreamers/article/details/12309269
Bell数入门的更多相关文章
- Bell(hdu4767+矩阵+中国剩余定理+bell数+Stirling数+欧几里德)
Bell Time Limit:3000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit Status ...
- Stirling数,Bell数,Catalan数,Bernoulli数
组合数学的实质还是DP,但是从通式角度处理的话有利于FFT等的实现. 首先推荐$Candy?$的球划分问题集合: http://www.cnblogs.com/candy99/p/6400735.ht ...
- Bell数和Stirling数
前面说到了Catalan数,现在来了一个Bell数和Stirling数.什么是Bell数,什么是Stirling数呢?两者的关系如何,有用于解决什么算法问题呢? Bell数是以Bell这个人命名的,组 ...
- codeforces 569D D. Symmetric and Transitive(bell数+dp)
题目链接: D. Symmetric and Transitive time limit per test 1.5 seconds memory limit per test 256 megabyte ...
- 恶补---bell数
定义 bell数即一个集合划分的数目 示例 前几项的bell数列为 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975 ,... 求值方法 1.bell ...
- (转) [组合数学] 第一类,第二类Stirling数,Bell数
一.第二类Stirling数 定理:第二类Stirling数S(p,k)计数的是把p元素集合划分到k个不可区分的盒子里且没有空盒子的划分个数. 证明:元素在哪些盒子并不重要,唯一重要的是各个盒子里装的 ...
- Catalan卡特兰数入门
简介 卡特兰数是组合数学中的一种常见数列 它的前几项为: 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, ...
- Day9--Python--函数入门
函数神马是函数: 函数是对功能或动作的封装函数的定义: def 函数名(形参列表): #参数 函数体(return) 调用: ret = 函数名(实参列表) 函数名就是变量名: 函数名的命名规则:变量 ...
- 卡特兰(Catalan)数入门详解
也许更好的阅读体验 基本概念 介绍 学卡特兰数我觉得可能比组合数要难一点,因为组合数可以很明确的告诉你那个公式是在干什么,而卡特兰数却像是在用大量例子来解释什么时卡特兰数 这里,我对卡特兰数做一点自己 ...
随机推荐
- 如何自己手动修改win10磁贴背景颜色?
前言 当我们安装完应用后,可以选择将应用图标固定到"开始"屏幕,于是就会产生一个磁贴,有的应用会自带背景颜色,有的则是默认的主题色.其实这个只不过是应用本身没有没有去适配win10 ...
- centos7双网卡绑定
# 概念 服务器存在多块网卡时,可以通过bond来实现多块网卡并在一起使用: # 模式 mode 0:load balancing (round-robin) Support:需要Switch支持 & ...
- 重置 Macbook 登录密码
1.按 开机键 的同时 按 Command + R,等进度条走完,会出现如下图 2.在菜单栏,选取“实用工具”>“终端”. 3.在终端窗口,键入下面的命令:resetpassword 按下回车键 ...
- 嵌入式web服务器BOA+CGI+HTML+MySQL项目实战——Linux
准备环境操作系统: Ubuntu12.04 LTS环境搭建: 需要 BOA,Apache,CCGI,MySQL,GCC[Linux下嵌入式Web服务器BOA和CGI编程开发][数据库的相关知识——学习 ...
- HTML5 极简的JS函数
页面初始化 mui框架将很多功能配置都集中在mui.init方法中,要使用某项功能,只需要在mui.init方法中完成对应参数配置即可,目前支持在mui.init方法中配置的功能包括:创建子页面.关闭 ...
- wind安装Jenkins+sonar+jdk
最近公司在用Jenkins持续集成软件,自己研究的头痛,而且还是和C#项目融合到一起的,网上看到的都是Java的,我自己配了一套和C#的,和你们分享. Jenkins是一个开源软件项目,旨在提供一个开 ...
- The XOR Largest Pair(tire树)
题目 The XOR Largest Pair 解析 一年前听学长讲这道题,什么01trie,好高级啊,所以没学,现在一看.... 看到xor就应该想到二进制,一看数据\(A_i< 2^{31} ...
- DataPipeline如何实现数据质量管理?
数据质量管理已经成为数据治理的重要组成部分.高质量的数据是企业进行决策的重要依据. DataPipeline数据质量平台整合了数据质量分析.质量校验.质量监控等多方面特性, 以保证数据质量的完整性.一 ...
- PHP使用Redis的Pub/Sub(发布订阅)命令
1.概念 名称 含义 channel 频道:生产者和消费者直接操作的对象 publish 生产者:向channel发送消息 subscribe 消费者:订阅一个或多个channel psubscrib ...
- MapReduce1.x与MapReduce2.x差异
一.MapReduce1.x简介 1.图解 2.JobTracker 主节点,单点,负责调度所有的作用和监控整个集群的资源负载. 3.TaskTracker 从节点,自身节点资源管理和JobTrack ...