Bell数入门
贝尔数
贝尔数是以埃里克·坦普尔·贝尔命名,是组合数学中的一组整数数列,开首是(OEIS的A000110数列):
$$B_0 = 1, B_1 = 1, B_2 = 2, B_3 = 5, B_4 = 15, B_5 = 52, B_6 = 203, ...$$
$B_n$ 的含义是基数为 $n$ 的集合划分成非空集合的划分数。
例如, $B_3=5$ 是因为3个元素的集合有5种划分方法:
{{a}, {b}, {c}}
{{a}, {b, c}}
{{b}, {a, c}}
{{c}, {a, b}}
{{a, b, c}};
贝尔数有递推公式:
$$\displaystyle B_{n+1} = \sum_{k=0}^n\binom{n}{k}B_k$$
上述组合公式的证明:
可以这样来想,$B_{n+1}$ 是含有 $n+1$ 个元素集合的划分个数,考虑元素 $b_{n+1}$,
假设他被单独划分到一类,那么还剩下n个元素,这种情况下划分个数为 $\binom{n}{n}B_n$
假设他和某一个元素被划分为一类,那么还剩下n-1个元素,这种情况下划分个数为 $\binom{n}{n-1}B_{n-1}$
假设他和某两个元素被划分为一类,那么还剩下n-2个元素,这种情况下划分个数为 $\binom{n}{n-2}B_{n-2}$,
依次类推,得到了上述组合公式
它们也适合“Dobinski公式”:
$\displaystyle B_n = \frac{1}{e}\sum_{k=0}^{\infty}\frac{k^n}{k!}$
即期望值为1 的泊松分布的 $n$ 次矩。
它们也适合"Touchard同余":若 $p$ 是任意素数,那么
$$B_{p+n} = B_n + B_{n+1}$$
$$B_{p^m+n} = mB_n + B_{n+1}$$
贝尔数模素数 $p$ 的周期为:
$$T_p = \frac{p^p-1}{p-1}$$
每个贝尔数都是相应第二类斯特林数的和
$$\displaystyle B_n = \sum_{k=0}^nS(n, k)$$
因为,第二类斯特林数 $S(n, k)$ 是把基数为 $n$ 的集合划分为正好 $k$ 个非空集合的方案数。
此外,贝尔数的指数型母函数是
$$\displaystyle \sum_{n=0}^{\infty }\frac{B_n}{n!}x^n = e^{e^x-1}$$
贝尔三角形
用以下方法建构一个三角矩阵(形式类似杨辉三角形):
- 第一行第一项为1($a_{1,1}=1$)
- 对于 $n>1$,第 $n$ 行第一项等于第 $n-1$ 项的最后一项($a_{n,1} = a_{n-1, n-1}$)
- 对于 $m,n>1$,第 $n$ 行第 $m$ 项等于它左边和左上两个数之和($a_{n,m} = a_{n, m-1} + a_{n-1, m-1}$)
结果如下:(OEIS:A011971)
每行首项是贝尔数。每行之和是第二类Stirling数。
可以利用这个三角形来求Bell数,
#include<bits/stdc++.h>
using namespace std; const int maxn = +;
const int mod = ; //周期为13
int bell[maxn], T[maxn]; void Bell(int n, int mod) //求前n项Bell数
{
bell[] = bell[] = ;
T[] = ;T[] = ;
for(int i = ;i <= n;i++)
{
T[i-] = bell[i-];
for(int j = i-;j >= ;j--) //滚动数组
T[j] = (T[j] + T[j+]) % mod;
bell[i] = T[];
}
} int main()
{
Bell(, mod);
for(int i = ;i < ;i++)
printf("%d%c", bell[i], (i+)% == ? '\n' : ' ');
}
参考链接:
1. https://zh.wikipedia.org/w/index.php?title=%E8%B4%9D%E5%B0%94%E6%95%B0
2. https://blog.csdn.net/ACdreamers/article/details/12309269
Bell数入门的更多相关文章
- Bell(hdu4767+矩阵+中国剩余定理+bell数+Stirling数+欧几里德)
Bell Time Limit:3000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Submit Status ...
- Stirling数,Bell数,Catalan数,Bernoulli数
组合数学的实质还是DP,但是从通式角度处理的话有利于FFT等的实现. 首先推荐$Candy?$的球划分问题集合: http://www.cnblogs.com/candy99/p/6400735.ht ...
- Bell数和Stirling数
前面说到了Catalan数,现在来了一个Bell数和Stirling数.什么是Bell数,什么是Stirling数呢?两者的关系如何,有用于解决什么算法问题呢? Bell数是以Bell这个人命名的,组 ...
- codeforces 569D D. Symmetric and Transitive(bell数+dp)
题目链接: D. Symmetric and Transitive time limit per test 1.5 seconds memory limit per test 256 megabyte ...
- 恶补---bell数
定义 bell数即一个集合划分的数目 示例 前几项的bell数列为 1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975 ,... 求值方法 1.bell ...
- (转) [组合数学] 第一类,第二类Stirling数,Bell数
一.第二类Stirling数 定理:第二类Stirling数S(p,k)计数的是把p元素集合划分到k个不可区分的盒子里且没有空盒子的划分个数. 证明:元素在哪些盒子并不重要,唯一重要的是各个盒子里装的 ...
- Catalan卡特兰数入门
简介 卡特兰数是组合数学中的一种常见数列 它的前几项为: 1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, ...
- Day9--Python--函数入门
函数神马是函数: 函数是对功能或动作的封装函数的定义: def 函数名(形参列表): #参数 函数体(return) 调用: ret = 函数名(实参列表) 函数名就是变量名: 函数名的命名规则:变量 ...
- 卡特兰(Catalan)数入门详解
也许更好的阅读体验 基本概念 介绍 学卡特兰数我觉得可能比组合数要难一点,因为组合数可以很明确的告诉你那个公式是在干什么,而卡特兰数却像是在用大量例子来解释什么时卡特兰数 这里,我对卡特兰数做一点自己 ...
随机推荐
- Java开发笔记(一百四十二)JavaFX的对话框
JavaFX的对话框主要分为提示对话框和文件对话框两类,其中提示对话框又分作消息对话框.警告对话框.错误对话框.确认对话框四种.这四种对话框都使用Alert控件表达,并通过对话框类型加以区分,例如Al ...
- Windows10下QT5.13.2安装mingw64/MYSQL8.0驱动
开始之前,先将编译器的路径添加到系统环境变量. 我的QT所以sql驱动是在下面这个目录中(大家在自己Qt的安装目录找到对应的文件夹就行,下面的路径也是如此), E:\qt\5.13.2\mingw73 ...
- webpack 打包器
创建目录mkdir demo && cd demo 产生package.json执行 npm init -y 先全局安装webpack和webpack-clinpm install w ...
- Navicat 导出 表结构
Navicat 导出 表结构 转自:https://www.cnblogs.com/xianxiaobo/p/10254737.html 1. 首先点击新建查询,然后输入下面的语句 SELECT CO ...
- nginx+rsync实现本地yum源以及公网yum源
1.配置nginx的autoindex模块,开启目录浏览功能 2.使用rsync同步公网源上的软件包,至本地目录中 3.配置客户端指向即可 1.nginx提供目录浏览功能 [root@xuliangw ...
- 【面试突击】- sql语句的优化分析
开门见山,问题所在 原文地址:http://www.cnblogs.com/knowledgesea/p/3686105.html sql语句性能达不到你的要求,执行效率让你忍无可忍,一般会时下面几种 ...
- electron-vue多显示屏下将新窗口投放是其他屏幕
display对象可以获取所有显示屏此处演示程序启动是投放新窗口至另一屏幕 import { app, BrowserWindow } from 'electron' const electron = ...
- 【转】java 环境变量:path与classpath区别
path指示java命令的路径,像javac.java.javaw等: classpath是javac编译器的一个环境变量,它的作用与import.package关键字有关,当你写下improt ja ...
- 车间管理难?APS系统为你智能排程
对 APS系统不熟或者不了解他的一些运行规则也是在实施项目中导致经常不能正常运行不可忽视的因素,对 APS系统的早期了解是整个项目实施运行的成功至关重要的因素. 如果不了解 APS潜在的因素和运行准则 ...
- 在centOS 7 上部署ansible自动化运维环境(01)
环境: 3台centos 7 mycat : 10.0.0.2 mariadb1: 10.0.0.3 mariadb2: 10.0.0.4 为了实验方便 f ...