Codeforces Round #304 (Div. 2)(CF546E) Soldier and Traveling(最大流)
题意
给定 n 个城市,m 条边。人只能从走相邻边相连(只能走一次)的城市。
现在给你初始城市的每一个人数,再给一组每个城市人数。询问是否可以从当前人数变换到给定人数。如果能,输入“YES”并输出方案,不能则输出“NO”。
http://codeforces.com/contest/546/problem/E
思路
当∑a!=∑b时,肯定不能。
建一个超级源点s和超级汇点t,s到(1n)连一条容量为a[i]的边,(n+12*n)到t连一条容量为b[i]的边,再将图中给定相连的边连容量为inf的边,比如u和v相连,那么u到v+n和v到u+n都要连容量为inf的边。还要将自己跟自己连边,即i到i+n连一条容量为inf的边,因为自己点的人不走相当于自己点走到自己点。最后都连上反向边用Dinic跑最大流,如果最大流==∑a,那么能,方案可以根据i到i+n的反向边的流量来求解。
样例的建图类似下面这样(随便画的):
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
const int inf=1e9;
const int N=505;
int n,m,x,y,z,maxflow,deep[N];//deep深度
struct Edge
{
int next,to,dis;
} edge[N*10];
int num_edge=-1,head[N],cur[N];//cur用于复制head
queue <int> q;
void add_edge(int from,int to,int dis,bool flag)
{
edge[++num_edge].next=head[from];
edge[num_edge].to=to;
if (flag) edge[num_edge].dis=dis;//反图的边权为 0
head[from]=num_edge;
}
//bfs用来分层
bool bfs(int s,int t)
{
memset(deep,0x7f,sizeof(deep));
while (!q.empty()) q.pop();
for (int i=0; i<=2*n+1; i++) cur[i]=head[i];
deep[s]=0;
q.push(s);
while (!q.empty())
{
int now=q.front();
q.pop();
for (int i=head[now]; i!=-1; i=edge[i].next)
{
if (deep[edge[i].to]>inf && edge[i].dis)//dis在此处用来做标记 是正图还是返图
{
deep[edge[i].to]=deep[now]+1;
q.push(edge[i].to);
}
}
}
if (deep[t]<inf) return true;
else return false;
}
//dfs找增加的流的量
int dfs(int now,int t,int limit)//limit为源点到这个点的路径上的最小边权
{
if (!limit || now==t) return limit;
int flow=0,f;
for (int i=cur[now]; i!=-1; i=edge[i].next)
{
cur[now]=i;
if (deep[edge[i].to]==deep[now]+1 && (f=dfs(edge[i].to,t,min(limit,edge[i].dis))))
{
flow+=f;
limit-=f;
edge[i].dis-=f;
edge[i^1].dis+=f;
if (!limit) break;
}
}
return flow;
}
void Dinic(int s,int t)
{
while (bfs(s,t))
maxflow+=dfs(s,t,inf);
}
int a[N],b[N];
int main()
{
memset(head,-1,sizeof(head));
scanf("%d%d",&n,&m);
int s1=0,s2=0,s=0,t=2*n+1;
for(int i=1; i<=n; i++)
{
scanf("%d",&a[i]);
add_edge(s,i,a[i],1);
add_edge(i,s,a[i],0);
s1+=a[i];
}
for(int i=1; i<=n; i++)
{
scanf("%d",&b[i]);
add_edge(i+n,t,b[i],1);
add_edge(t,i+n,b[i],0);
s2+=b[i];
}
for (int i=1; i<=m; i++)
{
scanf("%d%d",&x,&y);
add_edge(x,y+n,inf,1);
add_edge(y+n,x,inf,0);
add_edge(y,x+n,inf,1);
add_edge(x+n,y,inf,0);
}
if(s1!=s2)
{
puts("NO");
return 0;
}
for(int i=1;i<=n;i++)
{
add_edge(i,i+n,inf,1);add_edge(i+n,i,inf,0);
}
Dinic(s,t);
// cout<<maxflow<<endl;
if(maxflow==s1)
{
puts("YES");
int g[N][N];
for(int i=1;i<=n;i++)
{
for(int j=head[i];~j;j=edge[j].next)
{
int v=edge[j].to;
if(v>n)
{
g[i][v-n]=edge[j^1].dis;
}
}
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
printf("%d ",g[i][j]);
}
puts("");
}
}
else
{
puts("NO");
}
return 0;
}
Codeforces Round #304 (Div. 2)(CF546E) Soldier and Traveling(最大流)的更多相关文章
- Codeforces Round #304 (Div. 2) E. Soldier and Traveling 最大流
题目链接: http://codeforces.com/problemset/problem/546/E E. Soldier and Traveling time limit per test1 s ...
- DP+埃氏筛法 Codeforces Round #304 (Div. 2) D. Soldier and Number Game
题目传送门 /* 题意:b+1,b+2,...,a 所有数的素数个数和 DP+埃氏筛法:dp[i] 记录i的素数个数和,若i是素数,则为1:否则它可以从一个数乘以素数递推过来 最后改为i之前所有素数个 ...
- queue+模拟 Codeforces Round #304 (Div. 2) C. Soldier and Cards
题目传送门 /* 题意:两堆牌,每次拿出上面的牌做比较,大的一方收走两张牌,直到一方没有牌 queue容器:模拟上述过程,当次数达到最大值时判断为-1 */ #include <cstdio&g ...
- 贪心 Codeforces Round #304 (Div. 2) B. Soldier and Badges
题目传送门 /* 题意:问最少增加多少值使变成递增序列 贪心:排序后,每一个值改为前一个值+1,有可能a[i-1] = a[i] + 1,所以要 >= */ #include <cstdi ...
- 水题 Codeforces Round #304 (Div. 2) A. Soldier and Bananas
题目传送门 /* 水题:ans = (1+2+3+...+n) * k - n,开long long */ #include <cstdio> #include <algorithm ...
- 数学+DP Codeforces Round #304 (Div. 2) D. Soldier and Number Game
题目传送门 /* 题意:这题就是求b+1到a的因子个数和. 数学+DP:a[i]保存i的最小因子,dp[i] = dp[i/a[i]] +1;再来一个前缀和 */ /***************** ...
- Codeforces Round #304 (Div. 2) D. Soldier and Number Game 数学 质因数个数
D. Soldier and Number Game Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/conte ...
- Codeforces Round #304 (Div. 2) C. Soldier and Cards 水题
C. Soldier and Cards Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/546 ...
- Codeforces Round #304 (Div. 2) B. Soldier and Badges 水题
B. Soldier and Badges Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/54 ...
随机推荐
- 【UOJ388】配对树(dsu on tree+线段树)
传送门 题意: 给出一颗含有\(n\)个结点的无根树,之后给出一个长度为\(m\)的序列,每个元素在\([1,n]\)之间. 现在序列中每个长度为偶数的区间的完成时间定义为树上最小配对方法中每对匹配点 ...
- 古来月小队 Alpha冲刺阶段博客目录
一.Scrum Meeting 第六周: 链接:https://www.cnblogs.com/ouc-xxxxxx/p/11789325.html 任务:搭建安卓编程环境,学习安卓前端知识 第七周: ...
- verilog 常见单元描述
半加器: //行为级建模 module half_adder2(a, b, sum, c_out); input a, b; output sum, c_out; assign {c_out, sum ...
- luoguP5227 [AHOI2013]连通图
题意 虽然没用线段树,但是仍然是线段树分治的思想. 考虑分治询问序列,假设当前在\([l,r]\),我们将\([1,l-1]\)和\([r+1,Q]\)的与\([l,r]\)内不重复的边都连上了. 先 ...
- Kafka为什么不支持读写分离得原因?-干货
在 Kafka 中,出产者写入音讯.顾客读取音讯的操作都是与 leader 副本进行交互的,从 而结束的是一种主写主读的出产消费模型.数据库.Redis 等都具有主写主读的功用,与此同时还支撑主写从读 ...
- 用 FFLIB 实现 Apex 企业设计模式
Apex 企业设计模式将应用分为服务层.模型层.选择逻辑层.工作单元几个部分.FFLIB 是一个开源的 Apex 框架,可以帮助开发者快速建立相关的功能. FFLIB 的安装 FFLIB 可以直接部署 ...
- appium--使用PyYAML封装Capability
前戏 YAML 语言的设计目标,就是方便人类读写.它实质上是一种通用的数据串行化格式. 它的基本语法规则如下. YAML大小写敏感: 使用缩进代表层级关系: 缩进只能使用空格,不能使用TAB,不要求空 ...
- hw笔试题-01
#include <stdlib.h> #include <stdio.h> #include <string.h> int str_split(char *inp ...
- linux jdk1.8 32位下载永久地址,ubuntu,centos,java
链接: https://pan.baidu.com/s/16zSC0HZGFjrTAXrW6eyHzg 提取码: cj7m 复制这段内容后打开百度网盘手机App,操作更方便哦
- 一位IT民工的十年风雨历程
距离2020年只有30天了,转眼毕业快10年. 回首自己,已三十有三,中年危机. 古人云三十而立,我却还在测试途中摸爬滚打. 创业,自由职业永远是一个梦,白日梦. 焦虑.迷茫.看不到希望. 这两天一场 ...