1857: [Scoi2010]传送带

Time Limit: 1 Sec  Memory Limit: 64 MB
Submit: 1077  Solved: 575
[Submit][Status][Discuss]

Description

在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段。两条传送带分别为线段AB和线段CD。lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R。现在lxhgww想从A点走到D点,他想知道最少需要走多长时间

Input

输入数据第一行是4个整数,表示A和B的坐标,分别为Ax,Ay,Bx,By 第二行是4个整数,表示C和D的坐标,分别为Cx,Cy,Dx,Dy 第三行是3个整数,分别是P,Q,R

Output

输出数据为一行,表示lxhgww从A点走到D点的最短时间,保留到小数点后2位

Sample Input

0 0 0 100
100 0 100 100
2 2 1

Sample Output

136.60

HINT

对于100%的数据,1<= Ax,Ay,Bx,By,Cx,Cy,Dx,Dy<=1000
1<=P,Q,R<=10

Source

Day2

Solution

三分法,用于求单峰函数的极值问题,思路很好想

给定左右端点L,R;找出两个三等分点M1,M2(L<=M1<=M2<=R),如果M1比M2更优,则L=M1,否则R=M2

这道题,首先,关系很好找,发现是单峰函数,那么三分找最值即可

不过这里的话用到三分套三分,也非常好理解

对于外层三分出的M1,M2,如果比较大小,需要内部再进行三分来确定,这就是三分套三分

Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
int read()
{
int x=,f=; char ch=getchar();
while (ch<'' || ch>'') {if (ch=='-') f=-; ch=getchar();}
while (ch>='' && ch<='') {x=x*+ch-''; ch=getchar();}
return x*f;
}
#define eps 1e-3
int Ax,Ay,Bx,By,Cx,Cy,Dx,Dy,P,Q,R;
double dist(double x1,double y1,double x2,double y2)
{
return sqrt((x2-x1)*(x2-x1)+(y2-y1)*(y2-y1));
}
double Calc(double X,double Y)
{
double Lx=Cx,Ly=Cy,Rx=Dx,Ry=Dy;
while (fabs(Rx-Lx)>eps || fabs(Ry-Ly)>eps)
{
double Mx1=Lx+(Rx-Lx)/,My1=Ly+(Ry-Ly)/,Mx2=Lx+(Rx-Lx)/*,My2=Ly+(Ry-Ly)/*;
double LL=dist(Ax,Ay,X,Y)/P+dist(X,Y,Mx1,My1)/R+dist(Mx1,My1,Dx,Dy)/Q;
double RR=dist(Ax,Ay,X,Y)/P+dist(X,Y,Mx2,My2)/R+dist(Mx2,My2,Dx,Dy)/Q;
if (LL>RR) Lx=Mx1,Ly=My1;
else Rx=Mx2,Ry=My2;
}
return dist(Ax,Ay,X,Y)/P+dist(X,Y,Lx,Ly)/R+dist(Lx,Ly,Dx,Dy)/Q;
}
int main()
{
Ax=read(); Ay=read(); Bx=read(); By=read();
Cx=read(); Cy=read(); Dx=read(); Dy=read();
P=read(); Q=read(); R=read();
double Lx=Ax,Ly=Ay,Rx=Bx,Ry=By;
while (fabs(Rx-Lx)>eps || fabs(Ry-Ly)>eps)
{
double Mx1=Lx+(Rx-Lx)/,Mx2=Lx+(Rx-Lx)/*,My1=Ly+(Ry-Ly)/,My2=Ly+(Ry-Ly)/*;
double LL=Calc(Mx1,My1),RR=Calc(Mx2,My2);
if (LL>RR) Lx=Mx1,Ly=My1;
else Rx=Mx2,Ry=My2;
}
printf("%.2lf\n",Calc(Lx,Ly));
return ;
}

我会说因为变量重名WA了3发吗....A Sad Story...

【BZOJ-1857】传送带 三分套三分的更多相关文章

  1. Bzoj 1857: [Scoi2010]传送带(三分套三分)

    1857: [Scoi2010]传送带 Time Limit: 1 Sec Memory Limit: 64 MB Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段 ...

  2. BZOJ 1857 传送带 (三分套三分)

    在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R.现在lxhgww想从 ...

  3. 2018.06.30 BZOJ1857: [Scoi2010]传送带(三分套三分)

    1857: [Scoi2010]传送带 Time Limit: 1 Sec Memory Limit: 64 MB Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段 ...

  4. 【BZOJ1857】[Scoi2010]传送带 三分套三分

    [BZOJ1857][Scoi2010]传送带 Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度 ...

  5. 【BZOJ1857】传送带(分治经典:三分套三分)

    点此看题面 大致题意: 一个二维平面上有两条传送带\(AB\)和\(CD\),\(AB\)传送带的移动速度为\(P\),\(CD\)传送带的移动速度为\(Q\),步行速度为\(R\),问你从\(A\) ...

  6. loj10017. 「一本通 1.2 练习 4」传送带(三分套三分)

    题目描述 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R.现在lxh ...

  7. #10017 传送带(SCOI 2010)(三分套三分)

    [题目描述] 在一个 2 维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段 AB 和线段 CD.lxhgww 在 AB上的移动速度为 P ,在 CD 上的移动速度为 Q,在平 ...

  8. bzoj1857: [Scoi2010]传送带--三分套三分

    三分套三分模板 貌似只要是单峰函数就可以用三分求解 #include<stdio.h> #include<string.h> #include<algorithm> ...

  9. [BZOJ 1857] 传送带

    Link: BZOJ 1857 传送门 Solution: 首先中间的两个拐点$C,D$肯定都在传送带$A,B$上 接下来感性发现固定点A/C,另一个点C/D时间随位置的变化为单峰函数 这样就是三分套 ...

随机推荐

  1. 源码安装mysql

    1. 安装依赖组件 # yum install gcc gcc-c++ ncurses-devel perl -y   2. 安装cmake # wget http://www.cmake.org/f ...

  2. Eclipse和MyEclipse工程描述符.classpath和.project和.mymetadata详解aaaaaa(转)

    Eclipse和MyEclipse工程描述符.classpath和.project和.mymetadata详解(转) (2012-03-28 15:06:54) 转载▼ 标签: .mymetadata ...

  3. nginx架构

    nginx平台初探(100%)  

  4. JavaScript系列:计算一个结果为30的加法智力题

    用下面这段JavaScript代码可以计算出来 function findTheThreeNum(numFix) { var a = ["1", "3", &q ...

  5. 20160803 - C:\WINDOWS\system32\config\systemprofile\Desktop 不可用的解决

    问题:某些软件在从注册表读取用户桌面地址时,欠考虑的%USERPROFILE%的情况,例如迅雷打开文件时,会提示: [Window Title]位置不可用 [Content]C:\WINDOWS\sy ...

  6. 帕雷托最优(Pareto optimality)、帕雷托效率(Pareto efficiency)

    帕雷托最优(英语:Pareto optimality),或帕雷托最适,也称为帕雷托效率(英语:Pareto efficiency),是经济学中的重要概念,并且在博弈论.工程学和社会科学中有着广泛的应用 ...

  7. eclipse技巧总结

       如果遇到错误或警告,先试试统一的方法:在problems view中,右键error或者warnning,选择quick fix serial ID并不常用,如果不实现它,eclipse会给出一 ...

  8. 常用数据库高可用和分区解决方案(1) — MySQL篇

    在本文中我们将会讨论MySQL.Oracle.MongoDB.Redis以及Oceanbase数据库,大家可能会奇怪为什么看不到有名关系型数据库MSSQL.DB2或者有名NoSQL数据库Hbase.L ...

  9. MySQL 5.7.9版本sql_mode=only_full_group_by问题

    用到GROUP BY 语句查询时com.mysql.jdbc.exceptions.jdbc4.MySQLSyntaxErrorException: Expression #2 of SELECT l ...

  10. Maven遇到的错误汇总

    使用工具是MyEclipse10: 1.创建Maven项目出错 1.项目名带有Maven Webapp 解决方案: 2.缺少jar could not resolve archetype :   Co ...