Tensorflow学习笔记1:Get Started
关于Tensorflow的基本介绍
Tensorflow是一个基于图的计算系统,其主要应用于机器学习。
从Tensorflow名字的字面意思可以拆分成两部分来理解:Tensor+flow。
- Tensor:中文名可以称为“张量”,其本质就是任意维度的数组。一个向量就是一个1维的Tensor,一个矩阵就是2维的Tensor。
- Flow:指的就是图计算中的数据流。
当我们想要使用Tensorflow做什么事情的时候,一般需要三个操作步骤:
- 创建Tensor;
- 添加Operations(Operations输入Tensor,然后输出另一个Tensor);
- 执行计算(也就是运行一个可计算的图)。
Tensorflow有个图的概念,Operations会添加到图中,作为图的节点。在添加某Operation的时候,不会立即执行该Operation。Tensorflow会等待所有Operation添加完毕,然后Tensorflow会优化该计算图,以便决定如何执行计算。
快速使用
如果想开始实验一下Tensorflow,可以通过Docker启动官方的镜像tensorflow/tensorflow。
如下所示,
lienhuadeMacBook-Pro:tensorflow lienhua34$ docker run -d -p : --name tensorflow tensorflow/tensorflow
0fc7849b3ef5ac56e8ad372cc201874338c586ed5f47a4205997712efcd35646
lienhuadeMacBook-Pro:tensorflow lienhua34$ docker ps -a
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
0fc7849b3ef5 tensorflow/tensorflow "/run_jupyter.sh" minutes ago Up seconds /tcp, 0.0.0.0:->/tcp tensorflow
该镜像启动一个jupyter,然后我们在浏览器中输入http://localhost:8888/来访问,如下图所示,
然后点击右上角的New -> Python 2,新建的一个Python交互页面,便可以开始实验Tensorflow的功能,
简单实例:向量相加
下面我们通过两个向量相加的简单例子来看一下Tensorflow的基本用法。
[1. 1. 1. 1.] + [2. 2. 2. 2.] = [3. 3. 3. 3.]
import tensorflow as tf
with tf.Session():
input1 = tf.constant([1.0 1.0 1.0 1.0])
input2 = tf.constant([2.0 2.0 2.0 2.0])
output = tf.add(input1, input2)
result = output.eval()
print result
Tensorflow的计算必须要在一个Session的上下文中。Session会包含一个计算图,而这个图你添加的Tensors和Operations。当然,你在添加Tensor和Operation的时候,它们都不会立即进行计算,而是等到最后需要计算Session的结果的时候。当Tensorflow之后了计算图中的所有Tensor和Operation之后,其会知道如何去优化和执行图的计算。
两个tf.constant() 语句向计算图中创建了两个Tensor。调用tf.constant()的动作大致可以说为,创建两个指定维度的Tensor,以及两个constant操作符用于初始化相对应的Tensor(不会立即执行)。
tf.add()语句向计算图中添加了一个add操作,当不会立即执行,这时候add操作的结果还无法获取。此时,计算图大致如下所示,
result = output.eval() print result
当我们最后调用output.eval()时,会触发Tensorflow执行计算图,从而获取output计算结点的结果。
Variable的使用
我们上面的例子使用的Tensor是常量(constant),而在我们实际的机器学习任务中,我们往往需要变量(variable)来记录一下可变的状态(例如神经网络节点的权重参数等)。下面我们来看一个简单的variable例子。
import tensorflow as tf
import numpy as np with tf.Session() as sess:
# Set up two variables, total and weights, that we'll change repeatedly.
total = tf.Variable(tf.zeros([1, 2]))
weights = tf.Variable(tf.random_uniform([1,2])) # Initialize the variables we defined above.
tf.initialize_all_variables().run() # This only adds the operators to the graph right now. The assignment
# and addition operations are not performed yet.
update_weights = tf.assign(weights, tf.random_uniform([1, 2], -1.0, 1.0))
update_total = tf.assign(total, tf.add(total, weights)) for _ in range(5):
# Actually run the operation graph, so randomly generate weights and then
# add them into the total. Order does matter here. We need to update
# the weights before updating the total.
sess.run(update_weights)
sess.run(update_total) print weights.eval(), total.eval()
概括了说,上面的代码就是创建了两个变量total和weights(都是1维的tensor),total所有元素初始化为0,而weights的元素则用-1到1之间的随机数进行初始化。然后在某个迭代中,使用-1到1之间的随机数来更新变量weights的元素,然后添加到变量total中。
在调用tf.Variable()的时候,只是定了变量以及变量的初始化操作(实际上并未执行)。所有变量都需要在开始执行图计算之前进行初始化。调用tf.initialize_all_variables().run()来对所有变量进行初始化。
在for循环中,
sess.run(update_weights)
触发执行更新weights变量的计算。
sess.run(update_total)
则处理了将变量total和变量weights进行相加,并将结果赋值到变量total。
Tensorflow学习笔记1:Get Started的更多相关文章
- Tensorflow学习笔记2:About Session, Graph, Operation and Tensor
简介 上一篇笔记:Tensorflow学习笔记1:Get Started 我们谈到Tensorflow是基于图(Graph)的计算系统.而图的节点则是由操作(Operation)来构成的,而图的各个节 ...
- Tensorflow学习笔记2019.01.22
tensorflow学习笔记2 edit by Strangewx 2019.01.04 4.1 机器学习基础 4.1.1 一般结构: 初始化模型参数:通常随机赋值,简单模型赋值0 训练数据:一般打乱 ...
- Tensorflow学习笔记2019.01.03
tensorflow学习笔记: 3.2 Tensorflow中定义数据流图 张量知识矩阵的一个超集. 超集:如果一个集合S2中的每一个元素都在集合S1中,且集合S1中可能包含S2中没有的元素,则集合S ...
- TensorFlow学习笔记之--[compute_gradients和apply_gradients原理浅析]
I optimizer.minimize(loss, var_list) 我们都知道,TensorFlow为我们提供了丰富的优化函数,例如GradientDescentOptimizer.这个方法会自 ...
- 深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识
深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 s ...
- 深度学习-tensorflow学习笔记(2)-MNIST手写字体识别
深度学习-tensorflow学习笔记(2)-MNIST手写字体识别超级详细版 这是tf入门的第一个例子.minst应该是内置的数据集. 前置知识在学习笔记(1)里面讲过了 这里直接上代码 # -*- ...
- tensorflow学习笔记(4)-学习率
tensorflow学习笔记(4)-学习率 首先学习率如下图 所以在实际运用中我们会使用指数衰减的学习率 在tf中有这样一个函数 tf.train.exponential_decay(learning ...
- tensorflow学习笔记(3)前置数学知识
tensorflow学习笔记(3)前置数学知识 首先是神经元的模型 接下来是激励函数 神经网络的复杂度计算 层数:隐藏层+输出层 总参数=总的w+b 下图为2层 如下图 w为3*4+4个 b为4* ...
- tensorflow学习笔记(2)-反向传播
tensorflow学习笔记(2)-反向传播 反向传播是为了训练模型参数,在所有参数上使用梯度下降,让NN模型在的损失函数最小 损失函数:学过机器学习logistic回归都知道损失函数-就是预测值和真 ...
- tensorflow学习笔记(1)-基本语法和前向传播
tensorflow学习笔记(1) (1)tf中的图 图中就是一个计算图,一个计算过程. 图中的constant是个常量 计 ...
随机推荐
- 烂泥:通过binlog恢复mysql备份之前的数据
本文由秀依林枫提供友情赞助,首发于烂泥行天下. 上一篇文章,我们讲解了如何通过mysql的binlog日志恢复mysql数据库,文章连接为<烂泥:通过binlog恢复mysql数据库>.其 ...
- Makefile变量
自定义变量 = 是最基本的赋值,会把整个makefile展开之后再决定是多少 x=foo y=$(x)bar #y是asdbar,不是foobar x=asd := 是覆盖之前的值,和=不同,和赋值的 ...
- 使用bakefile编译C工程代码
前言 最近有个想法,想把ineedle整体架构从头自己编写代码来实现一下,来加深对iNeedle系统的理解,同时加强Linux + C相关知识.由于iNeedle系统的庞大,只能是先把框架搭起来,根据 ...
- CentOS 6.3下配置LVM(逻辑卷管理)
一.简介 LVM是逻辑盘卷管理(Logical Volume Manager)的简称,它是Linux环境下对磁盘分区进行管理的一种机制,LVM是建立在硬盘和分区之上的一个逻辑层,来提高磁盘分区管理的灵 ...
- cal 命令
cal命令是linux里面查看日历的一个命令,效果如下: [root@localhost ~]# cal 十月 日 一 二 三 四 五 六 我们可以的很形象的从日历上看出今天是哪年,哪年的哪天,周几, ...
- 使用.Net自带的GZipStream进行流压缩与解压
using System.IO; using System.IO.Compression; using System.Text; namespace CS.Utility { /// <summ ...
- IIS7 配合 vs2013内置 LocalDB使用
错误提示: 在与 SQL Server 建立连接时出现与网络相关的或特定于实例的错误.未找到或无法访问服务器.请验证实例名称是否正确并且 SQL Server 已配置为允许远程连接. (provide ...
- hdu-5127------hdu5137
hdu-5127 思路: 本来正解好像是动态凸包,暴力10000+ms可以搞过去; hdu-5128 思路: 枚举两个长方形的对角线,然后判断是否不相交,更新答案就好; hdu-5130 思路: 将题 ...
- Vijos1451圆环取数[环形DP|区间DP]
背景 小K攒足了路费来到了教主所在的宫殿门前,但是当小K要进去的时候,却发现了要与教主守护者进行一个特殊的游戏,只有取到了最大值才能进去Orz教主…… 描述 守护者拿出被划分为n个格子的一个圆环,每个 ...
- Concurrency::task(C++)
先看一个例子 #include <ppltasks.h> #include <iostream> using namespace Concurrency; using name ...