Codeforces 711E ZS and The Birthday Paradox
传送门
time limit per test 2 seconds
memory limit per test 256 megabytes
input standard input
output standard output
ZS the Coder has recently found an interesting concept called the Birthday Paradox. It states that given a random set of $23$ people, there is around $50%$ chance that some two of them share the same birthday. ZS the Coder finds this very interesting, and decides to test this with the inhabitants of Udayland.
In Udayland, there are $2^n$ days in a year. ZS the Coder wants to interview $k$ people from Udayland, each of them has birthday in one of $2^n$ days (each day with equal probability). He is interested in the probability of at least two of them have the birthday at the same day.
ZS the Coder knows that the answer can be written as an irreducible fraction $\dfrac{A}{B}$. He wants to find the values of $A$ and $B$ (he does not like to deal with floating point numbers). Can you help him?
Input
The first and only line of the input contains two integers $n$ and $k$ ($1 \le n \le 10^18, 2 \le k \le 10^18$), meaning that there are $2^n$ days in a year and that ZS the Coder wants to interview exactly $k$ people.
Output
If the probability of at least two $k$ people having the same birthday in $2^n$ days long year equals ($A \ge 0, B \ge 1, \gcd(A,B)=1$), print the $A$ and $B$ in a single line.
Since these numbers may be too large, print them modulo $10^6 + 3$. Note that $A$ and $B$ must be coprime before their remainders modulo $10^6 + 3$ are taken.
Examples
Input
3 2
Output
1 8
Input
1 3
Output
1 1
Input
4 3
Output
23 128
Note
In the first sample case, there are $2^3 = 8$ days in Udayland. The probability that $2$ people have the same birthday among $2$ people is clearly $\frac{1}{8}$ , so $A = 1, B = 8$.
In the second sample case, there are only $2^1 = 2$ days in Udayland, but there are $3$ people, so it is guaranteed that two of them have the same birthday. Thus, the probability is $1$ and $A = B = 1$.
Solution
首先注意到$10^6+3$是个素数.
不难想到求任意两人生日都不冲突的概率更为简单, 答案是$\dfrac{A_{2n}{k}}{2^{nk}}$, 展开化简得
$$ \frac{(2n-1)(2n-2)\cdots(2n-(k-1))}{2{n(k-1)}} $$
这里我们需要注意:
$$\dfrac{a}{b}既约\Longleftrightarrow \dfrac{a}{b-a}既约,\ (b>a)$$
因为$\gcd(a, b)=\gcd(a, b-a)$.
接着要对此式进行约分, 也就是求分子的素因子分解形式中2的幂次. 这里有个key observation:
$$2^n-x中2的幂次和x中2的幂次相同.$$
所以问题转化成求$(k-1)!$中所包含的2的幂次.
而$n!$中包含的素数$p$的幂次, 记作$\nu_p(n!)$, 为:
$$\nu_p(n!)=\sum_{i\ge 1}[\frac{n}{p^i}]$$
上式也称作Legendre's formula.
注意: 如果$p$不是素数, 这个结论是不成立的.
Implementation
#include <bits/stdc++.h>
using namespace std;
typedef long long LL;
// return the max k s.t. p^k | n!
LL get_exponent(LL n, int p){
LL res=0;
for(LL x=p; n>=x; res+=n/x, x*=p);
return res;
}
LL Pow(LL x, LL n, int p){
LL res=1;
for(; n; x*=x, x%=p, n>>=1)
if(n&1) res*=x, res%=p;
return res;
}
// return 2^{(k-1)*n}
LL calc2(LL n, LL k, int p){
return Pow(Pow(2, k-1, p), n, p);
}
// x cannot be divided by p
LL inv(LL x, int p){
return Pow(x, p-2, p);
}
// A(n, k)%p, p is small
// n>=k
LL calc3(LL n, LL k, int p){
if(k>=p) return 0;
LL res=1;
for(; k; ){
res*=n, res%=p;
if(n==0) break;
--k, --n;
}
return res;
}
int main(){
LL n, k;
cin>>n>>k;
int p=1000003;
if(log2(k)>n){
puts("1 1");
}
else{
LL cnt=get_exponent(k-1, 2); //error-prone
LL x=Pow(2, cnt, p);
LL y=(Pow(2, n, p)+p-1)%p;
LL t=inv(x, p);
LL num=calc3(y, k-1, p)*t%p;
LL den=calc2(n, k, p)*t%p;
num=(den-num+p)%p; //error-prone
cout<<num<<' '<<den<<endl;
}
}
Pitfalls
最近写代码总是犯各种各样的傻逼错误. 比如这次我把函数calc2()中的return Pow(Pow(2, k-1, p), n, p);写成了Pow(Pow(2, k-1, p), n, p);. 这样在本地竟然把3个样例都过了. 然后交上去竟然WA on T1.
历尽千辛万苦才找到bug. 我的编译器(g++ 5.4.0)没报错, 可能是自动识别了这个错误. 避免这个问题的方法是编译时加上-Wall选项.
g++ main.cpp -o main -Wall -std=c++14 && ./main <in
Codeforces 711E ZS and The Birthday Paradox的更多相关文章
- Codeforces 711E ZS and The Birthday Paradox 数学
ZS and The Birthday Paradox 感觉里面有好多技巧.. #include<bits/stdc++.h> #define LL long long #define f ...
- Codeforces 711E ZS and The Birthday Paradox(乘法逆元)
[题目链接] http://codeforces.com/problemset/problem/711/E [题目大意] 假设一年有2^n天,问k个小朋友中有两个小朋友生日相同的概率. 假设该概率约分 ...
- codeforces 711E. ZS and The Birthday Paradox 概率
已知一年365天找23个人有2个人在同一天生日的概率 > 50% 给出n,k ,表示现在一年有2^n天,找k个人,有2个人在同一天生日的概率,求出来的概率是a/b形式,化到最简形式,由于a,b可 ...
- codeforces 711E E. ZS and The Birthday Paradox(数学+概率)
题目链接: E. ZS and The Birthday Paradox. time limit per test 2 seconds memory limit per test 256 megaby ...
- Codeforces Round #369 (Div. 2) E. ZS and The Birthday Paradox 数学
E. ZS and The Birthday Paradox 题目连接: http://www.codeforces.com/contest/711/problem/E Description ZS ...
- ZS and The Birthday Paradox
ZS and The Birthday Paradox 题目链接:http://codeforces.com/contest/711/problem/E 数学题(Legendre's formula) ...
- CF369E. ZS and The Birthday Paradox
/* cf369E. ZS and The Birthday Paradox http://codeforces.com/contest/711/problem/E 抽屉原理+快速幂+逆元+勒让德定理 ...
- 【Codeforces711E】ZS and The Birthday Paradox [数论]
ZS and The Birthday Paradox Time Limit: 20 Sec Memory Limit: 512 MB Description Input Output Sample ...
- 【28.57%】【codeforces 711E】ZS and The Birthday Paradox
time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...
随机推荐
- 0 bug 读后感
本书全名是 <0 bug- C/C++商用工程之道>,这是一本有争议的书,豆瓣链接: http://book.douban.com/subject/4149139/ ,建议有一些商用的开发 ...
- opencv6.5-imgproc图像处理模块之轮廓
接opencv6.4-imgproc图像处理模块之直方图与模板 这部分的<opencv_tutorial>上都是直接上代码,没有原理部分的解释的. 十一.轮廓 1.图像中找轮廓 /// 转 ...
- PHP Date ( I need to use)
本文记录项目中用到的 PHP Date 相关,备忘. 日期格式约定为 xx-xx-xx 格式(字符串),例如 2016-03-09. xx-xx-xx -> 时间戳 $date = " ...
- Java面试知识点总结
本篇文章会对面试中常遇到的Java技术点进行全面深入的总结,帮助我们在面试中更加得心应手,不参加面试的同学也能够借此机会梳理一下自己的知识体系,进行查漏补缺(阅读本文需要有一定的Java基础:若您初涉 ...
- RHEL每天定时备份Oracle
步骤: (1)创建脚本文件bak_112.sh,内容如下(自动按当前日期备份数据库): #!/bin/sh export ORACLE_BASE=/u01/app/oracle; ORACLE_HOM ...
- TF-IDF
TF-IDF(term frequency–inverse document frequency)是一种用于资讯检索与文本挖掘的常用加权技术.TF-IDF是一种统计方法,用以评估一字词对于一个文件集或 ...
- 探索 SharePoint 2013 Search功能
转载: http://www.cnblogs.com/OceanEyes/p/SharePont-2013-Search-Develop.html SharePoint 2013的搜索功能很强大,特别 ...
- MySQL Workbench使用及教程
MySQL Workbench是一款专为MySQL设计的ER/数据库建模工具.它是著名的数据库设计工具DBDesigner4的继任者.你可以用MySQL Workbench设计和创建新的数据库图示,建 ...
- ListView适配器获取布局文件作为View的三种方式
第一种方法: public View getView(int position, View convertView, ViewGroup parent) { View view = null; if ...
- [转]js中confirm实现执行操作前弹出确认框的方法
原文地址:http://www.jb51.net/article/56986.htm 本文实例讲述了js中confirm实现执行操作前弹出确认框的方法.分享给大家供大家参考.具体实现方法如下: 现在在 ...