传送门

time limit per test 2 seconds

memory limit per test 256 megabytes

input standard input

output standard output

ZS the Coder has recently found an interesting concept called the Birthday Paradox. It states that given a random set of $23$ people, there is around $50%$ chance that some two of them share the same birthday. ZS the Coder finds this very interesting, and decides to test this with the inhabitants of Udayland.

In Udayland, there are $2^n$ days in a year. ZS the Coder wants to interview $k$ people from Udayland, each of them has birthday in one of $2^n$ days (each day with equal probability). He is interested in the probability of at least two of them have the birthday at the same day.

ZS the Coder knows that the answer can be written as an irreducible fraction $\dfrac{A}{B}$. He wants to find the values of $A$ and $B$ (he does not like to deal with floating point numbers). Can you help him?

Input

The first and only line of the input contains two integers $n$ and $k$ ($1 \le n \le 10^18, 2 \le k \le 10^18$), meaning that there are $2^n$ days in a year and that ZS the Coder wants to interview exactly $k$ people.

Output

If the probability of at least two $k$ people having the same birthday in $2^n$ days long year equals ($A \ge 0, B \ge 1, \gcd(A,B)=1$), print the $A$ and $B$ in a single line.

Since these numbers may be too large, print them modulo $10^6 + 3$. Note that $A$ and $B$ must be coprime before their remainders modulo $10^6 + 3$ are taken.

Examples

Input

3 2

Output

1 8

Input

1 3

Output

1 1

Input

4 3

Output

23 128

Note

In the first sample case, there are $2^3 = 8$ days in Udayland. The probability that $2$ people have the same birthday among $2$ people is clearly $\frac{1}{8}$ , so $A = 1, B = 8$.

In the second sample case, there are only $2^1 = 2$ days in Udayland, but there are $3$ people, so it is guaranteed that two of them have the same birthday. Thus, the probability is $1$ and $A = B = 1$.


Solution

首先注意到$10^6+3$是个素数.

不难想到求任意两人生日都不冲突的概率更为简单, 答案是$\dfrac{A_{2n}{k}}{2^{nk}}$, 展开化简得

$$ \frac{(2n-1)(2n-2)\cdots(2n-(k-1))}{2{n(k-1)}} $$

这里我们需要注意:

$$\dfrac{a}{b}既约\Longleftrightarrow \dfrac{a}{b-a}既约,\ (b>a)$$

因为$\gcd(a, b)=\gcd(a, b-a)$.

接着要对此式进行约分, 也就是求分子的素因子分解形式中2的幂次. 这里有个key observation:

$$2^n-x中2的幂次和x中2的幂次相同.$$

所以问题转化成求$(k-1)!$中所包含的2的幂次.

而$n!$中包含的素数$p$的幂次, 记作$\nu_p(n!)$, 为:

$$\nu_p(n!)=\sum_{i\ge 1}[\frac{n}{p^i}]$$

上式也称作Legendre's formula.

注意: 如果$p$不是素数, 这个结论是不成立的.

Implementation

#include <bits/stdc++.h>
using namespace std;
typedef long long LL; // return the max k s.t. p^k | n!
LL get_exponent(LL n, int p){
LL res=0;
for(LL x=p; n>=x; res+=n/x, x*=p);
return res;
} LL Pow(LL x, LL n, int p){
LL res=1;
for(; n; x*=x, x%=p, n>>=1)
if(n&1) res*=x, res%=p;
return res;
}
// return 2^{(k-1)*n}
LL calc2(LL n, LL k, int p){
return Pow(Pow(2, k-1, p), n, p);
}
// x cannot be divided by p
LL inv(LL x, int p){
return Pow(x, p-2, p);
}
// A(n, k)%p, p is small
// n>=k
LL calc3(LL n, LL k, int p){
if(k>=p) return 0;
LL res=1;
for(; k; ){
res*=n, res%=p;
if(n==0) break;
--k, --n;
}
return res;
} int main(){
LL n, k;
cin>>n>>k;
int p=1000003; if(log2(k)>n){
puts("1 1");
}
else{
LL cnt=get_exponent(k-1, 2); //error-prone
LL x=Pow(2, cnt, p); LL y=(Pow(2, n, p)+p-1)%p;
LL t=inv(x, p);
LL num=calc3(y, k-1, p)*t%p;
LL den=calc2(n, k, p)*t%p; num=(den-num+p)%p; //error-prone
cout<<num<<' '<<den<<endl;
}
}

Pitfalls

最近写代码总是犯各种各样的傻逼错误. 比如这次我把函数calc2()中的return Pow(Pow(2, k-1, p), n, p);写成了Pow(Pow(2, k-1, p), n, p);. 这样在本地竟然把3个样例都过了. 然后交上去竟然WA on T1.

历尽千辛万苦才找到bug. 我的编译器(g++ 5.4.0)没报错, 可能是自动识别了这个错误. 避免这个问题的方法是编译时加上-Wall选项.

g++ main.cpp -o main -Wall -std=c++14 && ./main <in

Codeforces 711E ZS and The Birthday Paradox的更多相关文章

  1. Codeforces 711E ZS and The Birthday Paradox 数学

    ZS and The Birthday Paradox 感觉里面有好多技巧.. #include<bits/stdc++.h> #define LL long long #define f ...

  2. Codeforces 711E ZS and The Birthday Paradox(乘法逆元)

    [题目链接] http://codeforces.com/problemset/problem/711/E [题目大意] 假设一年有2^n天,问k个小朋友中有两个小朋友生日相同的概率. 假设该概率约分 ...

  3. codeforces 711E. ZS and The Birthday Paradox 概率

    已知一年365天找23个人有2个人在同一天生日的概率 > 50% 给出n,k ,表示现在一年有2^n天,找k个人,有2个人在同一天生日的概率,求出来的概率是a/b形式,化到最简形式,由于a,b可 ...

  4. codeforces 711E E. ZS and The Birthday Paradox(数学+概率)

    题目链接: E. ZS and The Birthday Paradox. time limit per test 2 seconds memory limit per test 256 megaby ...

  5. Codeforces Round #369 (Div. 2) E. ZS and The Birthday Paradox 数学

    E. ZS and The Birthday Paradox 题目连接: http://www.codeforces.com/contest/711/problem/E Description ZS ...

  6. ZS and The Birthday Paradox

    ZS and The Birthday Paradox 题目链接:http://codeforces.com/contest/711/problem/E 数学题(Legendre's formula) ...

  7. CF369E. ZS and The Birthday Paradox

    /* cf369E. ZS and The Birthday Paradox http://codeforces.com/contest/711/problem/E 抽屉原理+快速幂+逆元+勒让德定理 ...

  8. 【Codeforces711E】ZS and The Birthday Paradox [数论]

    ZS and The Birthday Paradox Time Limit: 20 Sec  Memory Limit: 512 MB Description Input Output Sample ...

  9. 【28.57%】【codeforces 711E】ZS and The Birthday Paradox

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

随机推荐

  1. 通过js动态生成页面表格

    var redlineTemplateP = $(".redlineDataList"); for (var index in detailArraryLists.rows){ v ...

  2. 【前端也要学点算法】快速排序的JavaScript实现

    作为算法目录下的第一篇博文,快速排序那是再合适不过了.作为最基本最经典的算法之一,我觉得每个程序员都应该熟悉并且掌握它,而不是只会调用库函数,知其然而不知其所以然. 排序算法有10种左右(或许更多), ...

  3. 高性能JavaScript DOM编程

    我们知道,DOM是用于操作XML和HTML文档的应用程序接口,用脚本进行DOM操作的代价很昂贵.有个贴切的比喻,把DOM和JavaScript(这里指ECMScript)各自想象为一个岛屿,它们之间用 ...

  4. Java程序-进程中的"进程"

    进程 我们知道程序在磁盘上的时候是静态的,当他被加载到内存的时候,就变成了一个动态的,称为进程,如下图是程序被加载到内存后,在内存中的分布情况如下      此图来自http://blog.csdn. ...

  5. Loom工具类:Unity3D巧妙处理多线程

    Loom代码不多,只有168行, 然而却具备了子线程运行Action, 子线程与主线程交互的能力! public static Thread RunAsync(Action a) public sta ...

  6. Rootkit Hunter恶意程序查杀

    恶意程序,恶意代码检测 下载:https://pkgs.org/search/rkhunter 安装:rpm -ivh rkunter* Installed: #需要先安装  lsof.x86_64 ...

  7. SpringMVC学习--文件上传

    简介 文件上传是web开发中常见的需求之一,springMVC将文件上传进行了集成,可以方便快捷的进行开发. springmvc中对多部件类型解析 在 页面form中提交enctype="m ...

  8. Android Intent应用

    1. 显示Intent // 直接设置Content和到下一个的Actvity的名字 Intent i = new Intent(MainActivity.this, AnotherAty.class ...

  9. extjs store的操作

    先来个声明,看着不错,贴过来的,没都测试过. Store.getCount()返回的是store中的所有数据记录,然后使用for循环遍历整个store,从而得到每条记录. 除了使用getCount() ...

  10. Java 接口中常量的思考

    接口中不允许方法的实现,而抽象类是允许方法实现的及定义变量的,因此我们可以看出接口是比抽象类更高层次的抽象.如果接口可以定义变量,但是接口中的方法又都是抽象的,在接口中无法通过行为(例如set()方法 ...