“矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授。
PDF格式学习笔记下载(Academia.edu)
第7章课程讲义下载(PDF)

Summary

  • For a nonsingular matrix $[A]$ on which one can always write it as $$[A] = [L][U]$$ where $[L]$ is a lower triangular matrix, $[U]$ is a upper triangular matrix.
  • Note that not all matrices have LU decomposition, such as $\begin{bmatrix}0& 2\\ 2& 0\end{bmatrix}$. $$\begin{bmatrix}0& 2\\ 2& 0\end{bmatrix}=\begin{bmatrix}1& 0\\ a& 1\end{bmatrix} \begin{bmatrix}b& c\\ 0& d\end{bmatrix} \Rightarrow \begin{cases} b=0\\ ab=2\end{cases}$$ which is contradiction.
  • If one is solving a set of equations $$[A][X]=[B]$$ then $$LUX=B$$ $$\Rightarrow L^{-1}LUX=L^{-1}B$$ $$\Rightarrow UX=L^{-1}B=Y$$ then we have $$\begin{cases}LY=B\\ UX=Y\end{cases}$$ So we can solve the first equation for $[Y]$by using forward substitution and then use the second equation to calculate the solution vector $[X]$ by back substitution.
  • For instance, solve the following set of equations: $$\begin{bmatrix}1& 2& 3\\ 2& 1& -4\\ 1& 5& 2\end{bmatrix}\cdot \begin{bmatrix} x\\ y\\ z \end{bmatrix} = \begin{bmatrix} 14\\ -8\\ 17\end{bmatrix}$$ Applying LU decomposition on the coefficient matrix,
    • Firstly write down an identity matrix (the same size as the coefficient matrix) on the left and the coefficient matrix on the right. $$L\leftarrow\begin{bmatrix}1& 0& 0\\ 0& 1& 0\\ 0& 0& 1 \end{bmatrix} \begin{bmatrix}1& 2& 3\\ 2& 1& -4\\ 1& 5& 2\end{bmatrix}\rightarrow U$$
    • Then applying elementary row operation on the right while simultaneously updating successive columns of the matrix on the left. For example, if we are doing $R_1 + m R_2$ on the right then we will do $C_2-mC_1$ on the left. That is, we will keep the equivalent of the product. $$\begin{bmatrix}1& 0& 0\\ 0& 1& 0\\ 0& 0& 1 \end{bmatrix} \begin{bmatrix}1& 2& 3\\ 2& 1& -4\\ 1& 5& 2\end{bmatrix}$$ $$\Rightarrow\begin{cases}R_2-2R_1 \\ C_1+2C_2\end{cases} \begin{bmatrix}1& 0& 0\\ 2& 1& 0\\ 0& 0& 1 \end{bmatrix} \begin{bmatrix}1& 2& 3\\ 0& -3& -10\\ 1& 5& 2\end{bmatrix}$$ $$\Rightarrow\begin{cases}R_3-R_1 \\ C_1+C_3\end{cases} \begin{bmatrix}1& 0& 0\\ 2& 1& 0\\ 1& 0& 1 \end{bmatrix} \begin{bmatrix}1& 2& 3\\ 0& -3& -10\\ 0& 3& -1\end{bmatrix}$$ $$\Rightarrow\begin{cases}R_3+R_2 \\ C_2-C_3\end{cases} \begin{bmatrix}1& 0& 0\\ 2& 1& 0\\ 1& -1& 1 \end{bmatrix} \begin{bmatrix}1& 2& 3\\ 0& -3& -10\\ 0& 0& -11\end{bmatrix}$$ Thus far, the right matrix is an upper triangular matrix (i.e. $U$) and the left one is a lower triangular matrix (i.e. $L$).
    • Solving $[L][Y]=[B]$, that is $$\begin{bmatrix}1& 0& 0\\ 2& 1& 0\\ 1& -1& 1 \end{bmatrix}\cdot Y=\begin{bmatrix} 14\\ -8\\ 17\end{bmatrix}\Rightarrow Y=\begin{bmatrix}14\\ -36\\ -33\end{bmatrix}$$
    • Solving $[U][X]=[Y]$, that is $$\begin{bmatrix}1& 2& 3\\ 0& -3& -10\\ 0& 0& -11\end{bmatrix}\cdot \begin{bmatrix} x\\ y\\ z \end{bmatrix} = \begin{bmatrix}14\\ -36\\ -33\end{bmatrix}$$ $$ \Rightarrow\begin{cases}x=1\\ y=2 \\ z=3\end{cases}$$

Selected Problems

1. Find the $[L]$ and $[U]$ matrices of the following matrix $$\begin{bmatrix}25& 5& 4\\ 75& 7& 16\\ 12.5& 12& 22 \end{bmatrix}$$

Solution:
$$\begin{bmatrix}1& 0& 0\\ 0& 1& 0\\ 0& 0& 1 \end{bmatrix}\begin{bmatrix}25& 5& 4\\ 75& 7& 16\\ 12.5& 12& 22 \end{bmatrix}$$ $$\Rightarrow \begin{cases}R_2-3R_1\\ R_3-{1\over2}R_1\\ C_1+3C_2\\ C_1+{1\over2}C_3\end{cases} \begin{bmatrix}1& 0& 0\\ 3& 1& 0\\ {1\over2}& 0& 1 \end{bmatrix} \begin{bmatrix}25& 5& 4\\ 0& -8& 4\\ 0& 9.5& 20 \end{bmatrix}$$ $$\Rightarrow \begin{cases}R_3+{19\over16}R_2\\C_2-{19\over16}C_3\end{cases} \begin{bmatrix}1& 0& 0\\ 3& 1& 0\\ {1\over2}& -{19\over16}& 1 \end{bmatrix} \begin{bmatrix}25& 5& 4\\ 0& -8& 4\\ 0& 0& {99\over4} \end{bmatrix}$$ That is, $$L= \begin{bmatrix}1& 0& 0\\ 3& 1& 0\\ {1\over2}& -{19\over16}& 1 \end{bmatrix},\ U = \begin{bmatrix}25& 5& 4\\ 0& -8& 4\\ 0& 0& {99\over4} \end{bmatrix}.$$

2. Using LU decomposition to solve: $$\begin{cases} 4x_1 + x_2 - x_3 = -2\\ 5x_1+x_2+2x_3=4\\ 6x_1+x_2+x_3=6 \end{cases}$$

Solution:
$$\begin{bmatrix}1& 0& 0\\ 0& 1& 0\\ 0& 0& 1 \end{bmatrix} \begin{bmatrix}4& 1& -1\\ 5& 1& 2\\ 6& 1& 1\end{bmatrix}$$ $$\Rightarrow \begin{cases}R_2-{5\over4}R_1\\ R_3-{3\over2}R_1\\ C_1+{5\over4}C_2\\ C_1+{3\over2}C_3\end{cases} \begin{bmatrix}1& 0& 0\\ {5\over4}& 1& 0\\ {3\over2}& 0& 1 \end{bmatrix} \begin{bmatrix}4& 1& -1\\ 0& -{1\over4}& {13\over4}\\ 0& -{1\over2}& {5\over2}\end{bmatrix}$$ $$\Rightarrow \begin{cases}R_3-2R_2\\ C_2+2C_3\end{cases} \begin{bmatrix}1& 0& 0\\ {5\over4}& 1& 0\\ {3\over2}& 2& 1 \end{bmatrix} \begin{bmatrix}4& 1& -1\\ 0& -{1\over4}& {13\over4}\\ 0&0& -4\end{bmatrix}$$ That is, $$L = \begin{bmatrix}1& 0& 0\\ {5\over4}& 1& 0\\ {3\over2}& 2& 1 \end{bmatrix},\ U= \begin{bmatrix}4& 1& -1\\ 0& -{1\over4}& {13\over4}\\ 0&0& -4\end{bmatrix}.$$ Then we solve $[L][Y]=[B]$, $$\begin{bmatrix}1& 0& 0\\ {5\over4}& 1& 0\\ {3\over2}& 2& 1 \end{bmatrix}\cdot Y=\begin{bmatrix}-2\\4\\6\end{bmatrix} \Rightarrow Y=\begin{bmatrix}-2\\{13\over2}\\ -4\end{bmatrix}$$ Finally, we solve $[U][X]=[Y]$, $$\begin{bmatrix}4& 1& -1\\ 0& -{1\over4}& {13\over4}\\ 0&0& -4\end{bmatrix}\cdot X= \begin{bmatrix}-2\\{13\over2}\\ -4\end{bmatrix}\Rightarrow X=\begin{bmatrix}3\\-13\\1\end{bmatrix}$$ Thus the solution is $$\begin{cases}x_1 = 3\\ x_2 = -13\\ x_3 = 1\end{cases}$$

3. Find the inverse of $$[A]=\begin{bmatrix}3& 4& 1\\ 2& -7& -1\\ 8& 1& 5\end{bmatrix}$$

Solution:

To find the inverse of a matrix, actually it is to solve a set of equations: $$\begin{cases}AX_1=[1, 0, 0]^{T}\\ AX_2 = [0, 1, 0]^{T}\\ AX_3 = [0, 0, 1]^{T} \end{cases}$$ Firstly, we will find the $[L]$ and $[U]$. $$\begin{bmatrix}1& 0& 0\\ 0& 1& 0\\ 0& 0& 1 \end{bmatrix} \begin{bmatrix}3& 4& 1\\ 2& -7& -1\\ 8& 1& 5\end{bmatrix}$$ $$\Rightarrow \begin{cases}R_2-{2\over3}R_1\\ R_3-{8\over3}R_1\\ C_1+{2\over3}C_2\\ C_1+{8\over3}C_3\end{cases} \begin{bmatrix}1& 0& 0\\ {2\over3}& 1& 0\\ {8\over3}& 0& 1 \end{bmatrix} \begin{bmatrix}3& 4& 1\\ 0& -{29\over3}& -{5\over3}\\ 0& -{29\over3}& {7\over3}\end{bmatrix}$$ $$\Rightarrow \begin{cases}R_3-R_2\\ C_2+C_3\end{cases} \begin{bmatrix}1& 0& 0\\ {2\over3}& 1& 0\\ {8\over3}& 1& 1 \end{bmatrix} \begin{bmatrix}3& 4& 1\\ 0& -{29\over3}& -{5\over3}\\ 0&0& 4\end{bmatrix}$$ That is, $$L = \begin{bmatrix}1& 0& 0\\ {2\over3}& 1& 0\\ {8\over3}& 1& 1 \end{bmatrix},\ U= \begin{bmatrix}3& 4& 1\\ 0& -{29\over3}& -{5\over3}\\ 0&0& 4\end{bmatrix}.$$ Then we solve $[L][Y]=[I]$, note that there are three columns of $[Y]$: $$LY_1 = \begin{bmatrix}1& 0& 0\\ {2\over3}& 1& 0\\ {8\over3}& 1& 1 \end{bmatrix} \cdot Y_1 = \begin{bmatrix}1\\0\\0\end{bmatrix} \Rightarrow Y_1=\left[1, -{2\over3}, -2\right]^{T}$$ $$LY_2 = \begin{bmatrix}1& 0& 0\\ {2\over3}& 1& 0\\ {8\over3}& 1& 1 \end{bmatrix} \cdot Y_2 = \begin{bmatrix}0\\1\\0\end{bmatrix} \Rightarrow Y_2=\left[0, 1, -1\right]^{T}$$ $$LY_3 = \begin{bmatrix}1& 0& 0\\ {2\over3}& 1& 0\\ {8\over3}& 1& 1 \end{bmatrix} \cdot Y_3 = \begin{bmatrix}0\\0\\1\end{bmatrix} \Rightarrow Y_3=\left[0, 0, 1\right]^{T}$$ Finally we can solve $[X]$ by $[U][X]=[Y]$: $$UX_1=Y_1\Rightarrow \begin{bmatrix}3& 4& 1\\ 0& -{29\over3}& -{5\over3}\\ 0&0& 4\end{bmatrix} \cdot X_1 = \begin{bmatrix}1\\ -{2\over3}\\ -2\end{bmatrix}\Rightarrow X_1= \left[{17\over58}, {9\over58}, -{1\over2}\right]^{T}$$ $$UX_2=Y_2\Rightarrow \begin{bmatrix}3& 4& 1\\ 0& -{29\over3}& -{5\over3}\\ 0&0& 4\end{bmatrix} \cdot X_2 = \begin{bmatrix}0\\ 1\\ -1\end{bmatrix}\Rightarrow X_2= \left[{19\over116}, -{7\over116}, -{1\over4}\right]^{T}$$ $$UX_3=Y_3\Rightarrow \begin{bmatrix}3& 4& 1\\ 0& -{29\over3}& -{5\over3}\\ 0&0& 4\end{bmatrix} \cdot X_3 = \begin{bmatrix}0\\ 0\\ 1\end{bmatrix}\Rightarrow X_3= \left[-{3\over116}, -{5\over116}, {1\over4}\right]^{T}$$ Thus the inverse of the original matrix is $$[A]^{-1} = \begin{bmatrix}{17\over58} & {19\over116} & -{3\over116}\\ {9\over58} & -{7\over116} & -{5\over116}\\ -{1\over2} & -{1\over4} & {1\over4}\end{bmatrix}$$

A.Kaw矩阵代数初步学习笔记 7. LU Decomposition的更多相关文章

  1. A.Kaw矩阵代数初步学习笔记 10. Eigenvalues and Eigenvectors

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  2. A.Kaw矩阵代数初步学习笔记 9. Adequacy of Solutions

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  3. A.Kaw矩阵代数初步学习笔记 8. Gauss-Seidel Method

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  4. A.Kaw矩阵代数初步学习笔记 6. Gaussian Elimination

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  5. A.Kaw矩阵代数初步学习笔记 5. System of Equations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  6. A.Kaw矩阵代数初步学习笔记 4. Unary Matrix Operations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  7. A.Kaw矩阵代数初步学习笔记 3. Binary Matrix Operations

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  8. A.Kaw矩阵代数初步学习笔记 2. Vectors

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

  9. A.Kaw矩阵代数初步学习笔记 1. Introduction

    “矩阵代数初步”(Introduction to MATRIX ALGEBRA)课程由Prof. A.K.Kaw(University of South Florida)设计并讲授. PDF格式学习笔 ...

随机推荐

  1. python生成汉字图片字库

    最近做文档识别方面的项目,做汉字识别需要建立字库,在网上找了各种OCR,感觉都不好,这方面的技术应该比较成熟了,OCR的软件很多,但没有找到几篇有含金量量的论文,也没有看到哪位大牛公开字库,我用pyg ...

  2. git的安装以及遇到的问题

    git安装以及遇到的问题 之前没有学会如何在Ubuntu下使用git,国庆放假回来后,完成了git的安装,补回来了之前没有学会的东西. 以下是我安装的过程以及遇到问题.解决问题的过程. 这次安装git ...

  3. 基于Laravel+Swoole开发智能家居后端

    基于Laravel+Swoole开发智能家居后端 在上一篇<Laravel如何优雅的使用Swoole>中我已经大概谈到了Laravel结合Swoole的用法. 今天,我参与的智能家居项目基 ...

  4. 拦截PHP各种异常和错误,发生致命错误时进行报警,万事防患于未然

    在日常开发中,大多数人的做法是在开发环境时开启调试模式,在产品环境关闭调试模式.在开发的时候可以查看各种错误.异常,但是在线上就把错误显示的关闭. 上面的情形看似很科学,有人解释为这样很安全,别人看不 ...

  5. Android Studio代码混淆插件

    之前给公司的App添加代码混淆,在代码的混淆过程也遇到了不少的问题,再加上最近学习了一下Android Studio插件的开发,所以就开发一个代码混淆插件方便项目的代码混淆. 截图 第三方库列表清单 ...

  6. [NOIP摸你赛]Hzwer的陨石(带权并查集)

    题目描述: 经过不懈的努力,Hzwer召唤了很多陨石.已知Hzwer的地图上共有n个区域,且一开始的时候第i个陨石掉在了第i个区域.有电力喷射背包的ndsf很自豪,他认为搬陨石很容易,所以他将一些区域 ...

  7. C#实现每隔一段时间执行代码(多线程)

    总结以下三种方法,实现c#每隔一段时间执行代码: 方法一:调用线程执行方法,在方法中实现死循环,每个循环Sleep设定时间: 方法二:使用System.Timers.Timer类: 方法三:使用Sys ...

  8. word2vec使用说明补充(google工具包)

    [本文转自http://ir.dlut.edu.cn/NewsShow.aspx?ID=253,感谢原作者] word2vec是一个将单词转换成向量形式的工具.可以把对文本内容的处理简化为向量空间中的 ...

  9. SQL中的内连接与外连接

    关于关系代数连接运算的介绍请查看下面链接 http://www.cnblogs.com/xidongyu/articles/5980407.html 连接运算格式 链接运算由两部分构成:连接类型和连接 ...

  10. 1-mkdir 命令总结

    mkdir make directories 创建目录 [语法]: ls [选项] [参数] [功能介绍] mkdir命令用来创建目录.该命令创建由dirname命名的目录.如果在目录名的前面没有加任 ...