整数划分问题是一个锻炼组合数学,递归以及动态规划很好的例子,虽然问题看似简单,但是其中玄机万千,有人转化成为背包问题,有人用生成函数解,有人以此作为企业面试题目,可见这种问题的认可度还是很高的。

整数划分问题可以出现很多变种问题:

  1. 将n划分成若干正整数之和的划分数。(原题)
  2. 将n划分成k个正整数之和的划分数。
  3. 将n划分成最大数不超过k的划分数。
  4. 将n划分成若干奇正整数之和的划分数。
  5. 将n划分成若干不同整数之和的划分数......

第2,3,5的Code在北大研究生推免机试(校内)-复杂的整数划分中放出

具体来说,什么是整数划分呢?

  • 假设有一个整数 n , 总存在 n=m1+m2+...+mi; (mi为正整数,且1 <= mi <= n),则{m1,m2,...,mi}为n的一个划分。

∞这里我先用动态规划和递归的思想来解答该问题:

  • 我们定义一个状态如下: 当max(m1,m2,...,mi)<=m,那么称这一状态属于n的一个m划分。这里我们记n的m划分的个数为f(n,m);
  • 举个例子,当n=5时我们可以获得以下这几种划分(注意,例子中m>=5)

5 = 5        ————f(5,5)
   = 4 + 1       ————f(5,4)
   = 3 + 2           |
   = 3 + 1 + 1         ————f(5,3)
   = 2 + 2 + 1           |
   = 2 + 1 + 1 + 1         ————f(5,2)
   = 1 + 1 + 1 + 1 + 1         ————f(5,1)

根据n和m的关系,考虑以下几种情况:
  1. 当n=1时,只有一种划分{1};
  2. 当m=1时,只有一种划分{1,1,1,...,1};
  3. 当n=m时,根据划分中是否包含n,可分为两种情况:
      (1) 划分中包含n的情况,只有一个即{n};
      (2) 划分中不包含n的情况,这时划分中最大的数字也一定比n小,即n的所有(n-1)划分。

      因此 f(n,n) =1 + f(n,n-1);
  4. 当n<m时,划分总等同于f(n,n);
  5. 但n>m时,根据划分中是否包含最大值m,可以分为两种情况:
      (1) 划分中包含m的情况,即{m, {x1,x2,...xi}}, 其中{x1,x2,...xi} 的和为n-m,由于m>n-m,因此是(n-m)的m划分,因此这种划分个数为f(n-m, m);
      (2) 划分中不包含m的情况,则划分中所有值都比m小,即n的(m-1)划分,个数为f(n,m-1);因此 f(n, m) = f(n-m, m)+f(n,m-1);

   综合以上情况,我们可以看出,上面的结论具有递归定义特征,其中(1)和(2)属于回归条件,(3)和(4)属于特殊情况,将会转换为情况(5)。

   而情况(5)为通用情况,属于递推的方法,其本质主要是通过减小m以达到回归条件,从而解决问题。其递推表达式如下:

    • f(n, m)= 1;      (n=1 or m=1)
    • f(n, m)=f(n, n);   (n<m)
    • 1+ f(n, m-1);      (n=m)
    • f(n-m,m)+f(n,m-1); (n>m)

依照上述解法,就能够写出如下Code了:

  

 #include<iostream>
#include<cstdio>
#include<cstring>
using namespace std; #define MAX 51 int dp[MAX][MAX]; void DP()
{
for (int n = ; n < MAX; n++)
{
for (int m = ; m < MAX; m++)
{
if (n < m)
dp[n][m] = dp[n][n];
else if (n > m)
dp[n][m] = dp[n - m][m] + dp[n][m - ];
else
dp[n][m] = + dp[n][m - ];
}
}
} int main()
{
int num; //输入整数
DP();
while (scanf("%d", &num) != EOF)
printf("%d\n", dp[num][num]); return ;
}

小墨-原创


其他变种:

1.将n划分成不大于m的划分法: 

  1).若是划分多个整数可以存在相同的:

      dp[n][m]= dp[n][m-1]+ dp[n-m][m]

      dp[n][m]表示整数 n 的划分中,每个数不大于 m 的划分数。
       则划分数可以分为两种情况:
       a.划分中每个数都小于 m,相当于每个数不大于 m- 1, 故划分数为 dp[n][m-1].
       b.划分中有一个数为 m. 那就在 n中减去 m ,剩下的就相当于把 n-m 进行划分, 故划分数为 dp[n-m][m];

   2).若是划分多个不同的整数:

      dp[n][m]= dp[n][m-1]+ dp[n-m][m-1]

      dp[n][m]表示整数 n 的划分中,每个数不大于 m 的划分数。
      同样划分情况分为两种情况:
      a.划分中每个数都小于m,相当于每个数不大于 m-1,划分数为 dp[n][m-1].
      b.划分中有一个数为 m.在n中减去m,剩下相当对n-m进行划分,

   并且每一个数不大于m-1,故划分数为 dp[n-m][m-1]

   3).将n划分成k个数的划分法:

   dp[n][k]= dp[n-k][k]+ dp[n-1][k-1];

  方法可以分为两类讨论:
       第一类: n 份中不包含 1 的分法,为保证每份都 >= 2,可以先拿出 k 个 1 分
     到每一份,然后再把剩下的 n- k 分成 k 份即可,分法有: dp[n-k][k]
       第二类: n 份中至少有一份为 1 的分法,可以先拿出一个 1 作为单独的1份,剩
     下的 n- 1 再分成 k- 1 份即可,分法有:dp[n-1][k-1]

   4).将n划分成奇正整数的划分法:

   只需将1)中第二重循环的m++改成m+=2,因为 <=某偶数<= 某偶数-1 是相同的描述


整数划分问题-解法汇总(暂有DP-递归)的更多相关文章

  1. hdu1028(整数划分问题)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1028 整数划分问题 整数划分 --- 一个老生长谈的问题: 描述 整数划分是一个经典的问题.请写一个程 ...

  2. noi 7219:复杂的整数划分问题

    7219:复杂的整数划分问题 查看 提交 统计 提问 总时间限制:  200ms 内存限制:  65536kB 描述 将正整数n 表示成一系列正整数之和,n=n1+n2+…+nk, 其中n1>= ...

  3. noi7219 复杂的整数划分问题

    noi7219 复杂的整数划分问题 #include <bits/stdc++.h> using namespace std; ; int dp1[maxn][maxn], dp2[max ...

  4. poj 3181 Dollar Dayz (整数划分问题---递归+DP)

    题目:http://poj.org/problem?id=3181 思路:将整数N划分为一系列正整数之和,最大不超过K.称为整数N的K划分. 递归:直接看代码: 动态规划:dp[i][j]:=将整数i ...

  5. 区间dp 整数划分问题

    整数划分(四) 时间限制:1000 ms  |  内存限制:65535 KB 难度:3   描述 暑假来了,hrdv 又要留学校在参加ACM集训了,集训的生活非常Happy(ps:你懂得),可是他最近 ...

  6. 整数划分问题(记忆化搜索和DP方法)

    一. 问题 现在有一正整数N,要把它分为若干正整数之和,问有多少种本质不同的分法? (1)其中最大数不超过m, 有多少种分法? (2)分割后的正整数的数目不超过m个, 有多少种分法? (3)分成最大数 ...

  7. 华为OJ平台——放苹果(典型整数划分问题)

    题目描述: 输入m,n,分别表示苹果数与盘子的总数,要求输出苹果放在n个盘子的方法总数(注意511和151是一种情况),例如输入 7 3 输出8((7),(6,1),(5,2),(4,3),(5,1, ...

  8. 【noi 2.7_7219】复杂的整数划分问题(算法效率)

    题意:若干组数据,分别问 N划分成K个正整数之和的划分数目.N划分成若干个不同正整数之和的划分数目.N划分成若干个奇正整数之和的划分数目. 解法:请见我之前的一篇博文内的Article 2--[noi ...

  9. 【noi 2.7_7215】简单的整数划分问题(算法效率)

    题意:问正整数n的所有划分个数. 解法:f[i][j]表示划分 i 后的每个数不大于 j 的划分数.分情况讨论:划分中每个数都小于 j,相当于每个数不大于 j- 1, 故划分数为 f[i][j-1]  ...

随机推荐

  1. 使用supervisor监控进程

    在linux下监控进程,可以使用inittab,最近找到了supervisor,也很好用,记录一下:1.系统要安装python,并安装与之对应的setuptools,下载地址在此2.安装:# sh s ...

  2. struts2文件上传提示信息国际化

    1.在src的目录下新建文件fileUpload.properties 如图: fileUpload.properties文件内容为(把英文提示自定义为中文提示) struts.messages.er ...

  3. JavaScript 学习笔记 -- Function

    JS 中 函数.继承.闭包.作用域链... 一直都是硬伤,一碰到这样的问题头就大了.但是如果我继续着说:我不会,就真的无药可救了.要勇敢地说出:我的字典里就没有不会这个词,吼吼..正好昨天在书城里看了 ...

  4. 【PHP面向对象(OOP)编程入门教程】5.如何实例化对象?

    我们上面说过面向对象程序的单位就是对象,但对象又是通过类的实例化出来的,既然我们类会声明了,下一步就是实例化对象了. 当定义好类后,我们使用new关键字来生成一个对象. $对象名称 = new 类名称 ...

  5. PHP的$_SERVER['PHP_SELF']造成的XSS漏洞攻击及其解决方案

    $_SERVER['PHP_SELF']简介 $_SERVER['PHP_SELF'] 表示当前 PHP文件相对于网站根目录的位置地址,与 document root 相关. 假设我们有如下网址,$_ ...

  6. 【Go入门教程8】总结(25个关键字)

    这一章我们主要介绍了Go语言的一些语法,通过语法我们可以发现Go是多么的简单,只有二十五个关键字.让我们再来回顾一下这些关键字都是用来干什么的. break    default      func  ...

  7. 类调用类的protected或private的成员函数或成员变量

    1.在其中一个类定义友元函数,则可以实现该类直接使用另外类的里所有内容. 一般实例化两个类,友元类以及自身类,实现友元类传递指针到自身类 2.如果两个类是可以继承的关系,则在子类里继承该类,实现在子类 ...

  8. js搜索框输入提示(高效-ys8)

    <style type="text/css"> .inputbox .seleDiv { border: 1px solid #CCCCCC; display: non ...

  9. android 4种启动模式

    在android里,有4种activity的启动模式,分别为: “standard” (默认) “singleTop” “singleTask” “singleInstance” 它们主要有如下不同: ...

  10. Try-Catch机制使用场景分析

    (一)在什么场景下加Try-Catch机制   1)以业务逻辑功能为单位,在最上层加Try-Catch机制.为什么要这样做呢?这主要是增加程序的健壮性,防止因抛出异常过多,导致程序崩溃. try { ...