线性规划定义:

在给定有限的资源和竞争约束情况下,很多问题都可以表述为最大化或最小化某个目标。如果可以把目标指定为某些变量的线性函数,而且如果可以将资源约束指定为这些变量的等式或不等式,则得到了一个线性规划问题。


对于一些线性规划问题,我们通常能够转化成 每个变量的都出现两次,且系数分别为+1和-1。

就是这样的模型,我们可以用网络流的方法巧妙的解决。

首先网络流有性质:对于除了源点和汇点的其他点,有 流入的总量等于流出的总量。

这让我们有一个思路,把点当成每一个方程,把边看成给予限制的变量,对于每个变量,把+1看成流出-1看成流入,找到对应方程的位置连边。

如果给出的是线性不等式,就加上一个变量将其转化为线性等式。


看一道例题:BZOJ1061: [Noi2008]志愿者招募

Description

申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管。布布刚上任就遇到了一个难
题:为即将启动的奥运新项目招募一批短期志愿者。经过估算,这个项目需要N 天才能完成,其中第i 天至少需要
Ai 个人。 布布通过了解得知,一共有M 类志愿者可以招募。其中第i 类可以从第Si 天工作到第Ti 天,招募费用
是每人Ci 元。新官上任三把火,为了出色地完成自己的工作,布布希望用尽量少的费用招募足够的志愿者,但这
并不是他的特长!于是布布找到了你,希望你帮他设计一种最优的招募方案。
 
设第i类志愿者招募xi个。
于是可以列出方程:
$\begin{matrix}
xi\ge 0\\
x1\ge 2\\
x1+x2\ge 3\\
x2+x3\ge 4\\
\end{matrix}$
 
但是这个东西是不等式,于是加入一个变量y使得方程变为线性等式。
$\begin{matrix}
xi\ge 0\\
yi\ge 0\\
x1= y1\\
x1+x2= y2+3\\
x2+x3= y3+4\\
\end{matrix}$
 
此时变量出现次数不对,考虑每个变量出现都是一段连续的区间,那么我们差分一下,就变成每个变量只出现两次并且一次系数为+1一次系数为-1。
注意最后一行也要差分,就是说现在多了一个方程,这样:
$\begin{matrix}
xi\ge 0\\
yi\ge 0\\
x1-y1= 0\\
x2-y2+y1-3= 0\\
x3-x1-y3+y2= 0\\
-x2-x3-y4+y3=0
\end{matrix}$
 
于是建图就比较清晰了。
n+1个方程当做点。对于变量xi,从系数为+1的方程向系数为-1的方程连(inf,a[i])的边。
其中括号前面表示容量,后面表示费用,即S[i]->T[i]+1(inf,a[i])
对于变量yi,和xi差不多,也是从系数为+1的方程向系数为-1的方程连(inf,0)的边,
即i+1->i(inf,0)
对于常数项,若该常数项系数为正,则从S向其连边,容量为c[i]-c[i-1],否则从i向T连边,容量为c[i-1]-c[i]。
然后跑最小费用最大流即可。
总结一下建图吧,当我们把方程化成适合网络流求解的形式后,只需要把系数为+1的方程向系数为-1的方程连边即可。
 
代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define N 10050
#define M 100050
#define S (10049)
#define T (10048)
#define inf (1<<30)
int head[N],to[M],nxt[M],flow[M],val[M],cnt=1,path[N],Q[N],l,r,dis[N],inq[N],n,m,a[N],c[M],s[N],t[N];
inline void add(int u,int v,int f,int w) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt; flow[cnt]=f; val[cnt]=w;
to[++cnt]=u; nxt[cnt]=head[v]; head[v]=cnt; flow[cnt]=0; val[cnt]=-w;
}
bool spfa() {
memset(dis,0x3f,sizeof(dis));
memset(path,0,sizeof(path));
l=r=0; Q[r++]=S; dis[S]=0; inq[S]=1;
while(l!=r) {
int x=Q[l++],i; if(l==n+10) l=0; inq[x]=0;
for(i=head[x];i;i=nxt[i]) {
if(flow[i]&&dis[to[i]]>dis[x]+val[i]) {
dis[to[i]]=dis[x]+val[i];
path[to[i]]=i^1;
if(!inq[to[i]]) {
Q[r++]=to[i]; if(r==n+10) r=0; inq[to[i]]=1;
}
}
}
}
return path[T];
}
void mcmf() {
int minc=0,maxf=0;
while(spfa()) {
int nf=1<<30,i;
for(i=T;i!=S;i=to[path[i]]) {
nf=min(nf,flow[path[i]^1]);
}
for(i=T;i!=S;i=to[path[i]]) {
flow[path[i]]+=nf;
flow[path[i]^1]-=nf;
minc+=nf*val[path[i]^1];
}
maxf+=nf;
}
printf("%d\n",minc);
}
int main() {
scanf("%d%d",&n,&m);
int i;
for(i=1;i<=n;i++) {
scanf("%d",&c[i]); add(i+1,i,inf,0);
}
for(i=1;i<=m;i++) {
scanf("%d%d%d",&s[i],&t[i],&a[i]);
add(s[i],t[i]+1,inf,a[i]);
}
for(i=1;i<=n+1;i++) {
if(c[i]-c[i-1]>0) {
add(S,i,c[i]-c[i-1],0);
}else {
add(i,T,c[i-1]-c[i],0);
}
}
mcmf();
}

 

网络流解线性规划问题 BZOJ1061: [Noi2008]志愿者招募的更多相关文章

  1. [BZOJ1061][Noi2008]志愿者招募

    [BZOJ1061][Noi2008]志愿者招募 试题描述 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难 题:为即将启动的奥运新项目招募一批短期志愿 ...

  2. [BZOJ1061][Noi2008]志愿者招募 线性规划+费用流

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1061 根据题意列方程,然后用网络流解线性规划. 题解直接贴ByVoid的吧,太神了:htt ...

  3. 【费用流】BZOJ1061: [Noi2008]志愿者招募(这题超好)

    1061: [Noi2008]志愿者招募 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 5291  Solved: 3173[Submit][Stat ...

  4. BZOJ1061: [Noi2008]志愿者招募(线性规划)

    Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 5725  Solved: 3437[Submit][Status][Discuss] Descript ...

  5. BZOJ1061 NOI2008 志愿者招募 线性规划、费用流

    传送门 一道思路很妙的线性规划网络流 设\(X_i\)表示第\(i\)天需要的人数,\(P_i\)表示第\(i\)种人雇佣的个数 那么我们可以列出一系列式子 比如说样例就可以列出三个式子: \(P_1 ...

  6. 线性规划费用流解法(Bzoj1061: [Noi2008]志愿者招募)

    题面 传送门 Sol 线性规划费用流解法用与求解未知数为非负数的问题 这道题可以列出一堆形如 \(x[i]+x[j]+x[k]+...>=a[p]\) 的不等式 我们强行给每个式子减去一个东西, ...

  7. BZOJ1061 [Noi2008]志愿者招募 【单纯形】

    题目链接 BZOJ1061 题解 今天终于用正宗的线性规划\(A\)了这道题 题目可以看做有\(N\)个限制和\(M\)个变量 变量\(x_i\)表示第\(i\)种志愿者的人数,对于第\(i\)种志愿 ...

  8. 【费用流】BZOJ1061[NOI2008]-志愿者招募

    [题目大意] 一个项目需要n天完成,其中第i天至少需要Ai个人.共有m类人可以招募,其中第i类可以从第Si天做到第Ti天,每人的招募费用为Ci元.求最小招募费用. [思路] byvoid神犇的建图详解 ...

  9. [BZOJ1061] [Noi2008] 志愿者招募 (费用流)

    Description 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难 题:为即将启动的奥运新项目招募一批短期志愿者.经过估算,这个项目需要N 天才能 ...

随机推荐

  1. Kubernetes如何支持有状态服务的部署?

    作者:Jack47 转载请保留作者和原文出处 PS:如果喜欢我写的文章,欢迎关注我的微信公众账号程序员杰克,两边的文章会同步,也可以添加我的RSS订阅源. Kubernetes对无状态服务有完善的支持 ...

  2. Spring Cloud项目中通过Feign进行内部服务调用发生401\407错误无返回信息的问题

    问题描述 最近在使用Spring Cloud改造现有服务的工作中,在内部服务的调用方式上选择了Feign组件,由于服务与服务之间有权限控制,发现通过Feign来进行调用时如果发生了401.407错误时 ...

  3. oracle 11g杀掉锁的sql

    oracle 11g杀掉锁的sql [引用 2013-3-6 17:19:12]     字号:大 中 小 --查询出出现锁的session_idselect session_id from v$lo ...

  4. 获取redis主从复制链SHELL脚本

    获取redis主从复制链SHELL脚本 vi redisnode.sh #!/bin/sh master_host=$ master_port=$ auth=$ #判断输入密码是否为空,为空则转化为' ...

  5. linux下单独线程启动

    void linux_start() { signal(2, signal_callback_handler); //signal(9, signal_callback_handler); pid_t ...

  6. Python-网站页面代码获取

    Python3.6 库:urllib3, bs4 主程序是抓取亚马逊图书销售排名数据,但是亚马逊应该是加了反爬虫,拒绝疑似机器人的请求,这部分暂时以百度代替. 其实简单的页面抓取,常用的urllib. ...

  7. Web安全测试工具小集

    从此文开始搬家CSDN的博客 本文内容全部节选自<Ajax Security>第14章内容推荐工具: 模糊黑盒测试工具(Fuzzer): Popular free fuzzers incl ...

  8. currval of sequence "follow_id_seq" is not yet defined in this session

    postgresql上使用 select currval('follow_id_seq'); 报错: currval of sequence "follow_id_seq" is  ...

  9. Hashtable源码解析

    Hashtable同样是基于哈希表实现的,同样每个元素是一个key-value对,其内部也是通过单链表解决冲突问题,容量不足(超过了阀值)时,同样会自动增长. Hashtable也是JDK1.0引入的 ...

  10. Elasticsearch java api 常用查询方法QueryBuilder构造举例

    转载:http://m.blog.csdn.net/u012546526/article/details/74184769 Elasticsearch java api 常用查询方法QueryBuil ...