网络流解线性规划问题 BZOJ1061: [Noi2008]志愿者招募
线性规划定义:
在给定有限的资源和竞争约束情况下,很多问题都可以表述为最大化或最小化某个目标。如果可以把目标指定为某些变量的线性函数,而且如果可以将资源约束指定为这些变量的等式或不等式,则得到了一个线性规划问题。
对于一些线性规划问题,我们通常能够转化成 每个变量的都出现两次,且系数分别为+1和-1。
就是这样的模型,我们可以用网络流的方法巧妙的解决。
首先网络流有性质:对于除了源点和汇点的其他点,有 流入的总量等于流出的总量。
这让我们有一个思路,把点当成每一个方程,把边看成给予限制的变量,对于每个变量,把+1看成流出-1看成流入,找到对应方程的位置连边。
如果给出的是线性不等式,就加上一个变量将其转化为线性等式。
看一道例题:BZOJ1061: [Noi2008]志愿者招募
Description
xi\ge 0\\
x1\ge 2\\
x1+x2\ge 3\\
x2+x3\ge 4\\
\end{matrix}$
xi\ge 0\\
yi\ge 0\\
x1= y1\\
x1+x2= y2+3\\
x2+x3= y3+4\\
\end{matrix}$
$\begin{matrix}
xi\ge 0\\
yi\ge 0\\
x1-y1= 0\\
x2-y2+y1-3= 0\\
x3-x1-y3+y2= 0\\
-x2-x3-y4+y3=0
\end{matrix}$
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define N 10050
#define M 100050
#define S (10049)
#define T (10048)
#define inf (1<<30)
int head[N],to[M],nxt[M],flow[M],val[M],cnt=1,path[N],Q[N],l,r,dis[N],inq[N],n,m,a[N],c[M],s[N],t[N];
inline void add(int u,int v,int f,int w) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt; flow[cnt]=f; val[cnt]=w;
to[++cnt]=u; nxt[cnt]=head[v]; head[v]=cnt; flow[cnt]=0; val[cnt]=-w;
}
bool spfa() {
memset(dis,0x3f,sizeof(dis));
memset(path,0,sizeof(path));
l=r=0; Q[r++]=S; dis[S]=0; inq[S]=1;
while(l!=r) {
int x=Q[l++],i; if(l==n+10) l=0; inq[x]=0;
for(i=head[x];i;i=nxt[i]) {
if(flow[i]&&dis[to[i]]>dis[x]+val[i]) {
dis[to[i]]=dis[x]+val[i];
path[to[i]]=i^1;
if(!inq[to[i]]) {
Q[r++]=to[i]; if(r==n+10) r=0; inq[to[i]]=1;
}
}
}
}
return path[T];
}
void mcmf() {
int minc=0,maxf=0;
while(spfa()) {
int nf=1<<30,i;
for(i=T;i!=S;i=to[path[i]]) {
nf=min(nf,flow[path[i]^1]);
}
for(i=T;i!=S;i=to[path[i]]) {
flow[path[i]]+=nf;
flow[path[i]^1]-=nf;
minc+=nf*val[path[i]^1];
}
maxf+=nf;
}
printf("%d\n",minc);
}
int main() {
scanf("%d%d",&n,&m);
int i;
for(i=1;i<=n;i++) {
scanf("%d",&c[i]); add(i+1,i,inf,0);
}
for(i=1;i<=m;i++) {
scanf("%d%d%d",&s[i],&t[i],&a[i]);
add(s[i],t[i]+1,inf,a[i]);
}
for(i=1;i<=n+1;i++) {
if(c[i]-c[i-1]>0) {
add(S,i,c[i]-c[i-1],0);
}else {
add(i,T,c[i-1]-c[i],0);
}
}
mcmf();
}
网络流解线性规划问题 BZOJ1061: [Noi2008]志愿者招募的更多相关文章
- [BZOJ1061][Noi2008]志愿者招募
[BZOJ1061][Noi2008]志愿者招募 试题描述 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难 题:为即将启动的奥运新项目招募一批短期志愿 ...
- [BZOJ1061][Noi2008]志愿者招募 线性规划+费用流
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1061 根据题意列方程,然后用网络流解线性规划. 题解直接贴ByVoid的吧,太神了:htt ...
- 【费用流】BZOJ1061: [Noi2008]志愿者招募(这题超好)
1061: [Noi2008]志愿者招募 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 5291 Solved: 3173[Submit][Stat ...
- BZOJ1061: [Noi2008]志愿者招募(线性规划)
Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 5725 Solved: 3437[Submit][Status][Discuss] Descript ...
- BZOJ1061 NOI2008 志愿者招募 线性规划、费用流
传送门 一道思路很妙的线性规划网络流 设\(X_i\)表示第\(i\)天需要的人数,\(P_i\)表示第\(i\)种人雇佣的个数 那么我们可以列出一系列式子 比如说样例就可以列出三个式子: \(P_1 ...
- 线性规划费用流解法(Bzoj1061: [Noi2008]志愿者招募)
题面 传送门 Sol 线性规划费用流解法用与求解未知数为非负数的问题 这道题可以列出一堆形如 \(x[i]+x[j]+x[k]+...>=a[p]\) 的不等式 我们强行给每个式子减去一个东西, ...
- BZOJ1061 [Noi2008]志愿者招募 【单纯形】
题目链接 BZOJ1061 题解 今天终于用正宗的线性规划\(A\)了这道题 题目可以看做有\(N\)个限制和\(M\)个变量 变量\(x_i\)表示第\(i\)种志愿者的人数,对于第\(i\)种志愿 ...
- 【费用流】BZOJ1061[NOI2008]-志愿者招募
[题目大意] 一个项目需要n天完成,其中第i天至少需要Ai个人.共有m类人可以招募,其中第i类可以从第Si天做到第Ti天,每人的招募费用为Ci元.求最小招募费用. [思路] byvoid神犇的建图详解 ...
- [BZOJ1061] [Noi2008] 志愿者招募 (费用流)
Description 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难 题:为即将启动的奥运新项目招募一批短期志愿者.经过估算,这个项目需要N 天才能 ...
随机推荐
- JDK内置工具之一——JMap(java memory map)
1.介绍 打印出某个java进程(使用pid)内存内的,所有‘对象’的情况(如:产生那些对象,及其数量). 可以输出所有内存中对象的工具,甚至可以将VM 中的heap,以二进制输出成文本.使用方法 j ...
- TopShelf安装多实例
Topshelf 安装多实例命令: .\ConsoleApp1.exe -instance "newinstallname" install 多实例有一个好处就是容灾,当一个服务部 ...
- jdk的配置
在新建页面系统变量,输入变量名"JAVA_HOME":变量值"你的jdk的路径 在系统变量区域,选择"新建",输入变量名"CLASSPATH ...
- remove the nth node from the end of the list
problem description: remove the nth node from the end of the list for example: given: 1->2->3 ...
- HTML 学习笔记 day three
HTML学习笔记 Day three 7.2插入多媒体元素 插入音乐 语法结构:<embed src=”音乐文件的路径”></embed> 属性: Autostart:他只有 ...
- 上传本地代码及更新代码到GitHub教程
上传本地代码及更新代码到GitHub教程 上传本地代码 第一步:去github上创建自己的Repository,创建页面如下图所示: 红框为新建的仓库的https地址 第二步: echo " ...
- 我的Python之旅第二天
一 .字符串操作 1单引号('').双引号("").三引号(""" """)的区别. 如果字符串中不包含单引号.双引号, ...
- ORC文字识别软件破解版
下载地址:http://pan.baidu.com/s/1bnCiXdl 点击 然后可以免费用了ABBYY了!!
- PAT1106:Lowest Price in Supply Chain
1106. Lowest Price in Supply Chain (25) 时间限制 200 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CH ...
- PAT1120: Friend Numbers
1120. Friend Numbers (20) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue Two in ...