BZOJ_3196_Tyvj 1730 二逼平衡树_树状数组套主席树
BZOJ_3196_Tyvj 1730 二逼平衡树_树状数组套主席树
Description
您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作:
1.查询k在区间内的排名
2.查询区间内排名为k的值
3.修改某一位值上的数值
4.查询k在区间内的前驱(前驱定义为小于x,且最大的数)
5.查询k在区间内的后继(后继定义为大于x,且最小的数)
Input
第一行两个数 n,m 表示长度为n的有序序列和m个操作
第二行有n个数,表示有序序列
下面有m行,opt表示操作标号
若opt=1 则为操作1,之后有三个数l,r,k 表示查询k在区间[l,r]的排名
若opt=2 则为操作2,之后有三个数l,r,k 表示查询区间[l,r]内排名为k的数
若opt=3 则为操作3,之后有两个数pos,k 表示将pos位置的数修改为k
若opt=4 则为操作4,之后有三个数l,r,k 表示查询区间[l,r]内k的前驱
若opt=5 则为操作5,之后有三个数l,r,k 表示查询区间[l,r]内k的后继
Output
对于操作1,2,4,5各输出一行,表示查询结果
Sample Input
4 2 2 1 9 4 0 1 1
2 1 4 3
3 4 10
2 1 4 3
1 2 5 9
4 3 9 5
5 2 8 5
Sample Output
4
3
4
9
HINT
1.n和m的数据范围:n,m<=50000
2.序列中每个数的数据范围:[0,1e8]
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define N 50000
#define inf 100000050
int ls[N*220],rs[N*220],t[N*220],root[N],a[N];
int ly,lx,sx[N],sy[N];
int n,m,cnt;
void insert(int &x,int l,int r,int v,int c) {
if(!x) x=++cnt;
t[x]+=c;
if(l==r) return;
int mid=(l+r)>>1;
if(v<=mid) insert(ls[x],l,mid,v,c);
else insert(rs[x],mid+1,r,v,c);
}
int askxfromk(int l,int r,int k) {
if(l==r) return l;
int sizls=0,mid=(l+r)>>1,i;
for(i=1;i<=ly;i++) sizls+=t[ls[sy[i]]];
for(i=1;i<=lx;i++) sizls-=t[ls[sx[i]]];
if(k<=sizls) {
for(i=1;i<=ly;i++) sy[i]=ls[sy[i]];
for(i=1;i<=lx;i++) sx[i]=ls[sx[i]];
return askxfromk(l,mid,k);
}else {
for(i=1;i<=ly;i++) sy[i]=rs[sy[i]];
for(i=1;i<=lx;i++) sx[i]=rs[sx[i]];
return askxfromk(mid+1,r,k-sizls);
}
}
int askkfromx(int l,int r,int x) {
int i;
if(l==r) return 1;
int sizls=0,mid=(l+r)>>1;
for(i=1;i<=ly;i++) sizls+=t[ls[sy[i]]];
for(i=1;i<=lx;i++) sizls-=t[ls[sx[i]]];
if(x<=mid) {
for(i=1;i<=ly;i++) sy[i]=ls[sy[i]];
for(i=1;i<=lx;i++) sx[i]=ls[sx[i]];
return askkfromx(l,mid,x);
}else {
for(i=1;i<=ly;i++) sy[i]=rs[sy[i]];
for(i=1;i<=lx;i++) sx[i]=rs[sx[i]];
return sizls+askkfromx(mid+1,r,x);
}
}
int pre(int l,int r) {
int i; lx=ly=0;
for(i=l;i;i-=i&(-i)) sx[++lx]=root[i];
for(i=r;i;i-=i&(-i)) sy[++ly]=root[i];
}
int main() {
scanf("%d%d",&n,&m);
int i,x,j;
for(i=1;i<=n;i++) {
scanf("%d",&x);
a[i]=x;
for(j=i;j<=n;j+=j&(-j)) insert(root[j],-inf,inf,x,1);
}
int opt,y,z;
while(m--) {
scanf("%d%d%d",&opt,&x,&y);
if(opt!=3) scanf("%d",&z),x--;
if(opt==1) {
pre(x,y); printf("%d\n",askkfromx(-inf,inf,z));
}else if(opt==2) {
pre(x,y); printf("%d\n",askxfromk(-inf,inf,z));
}else if(opt==3) {
for(i=x;i<=n;i+=i&(-i)) insert(root[i],-inf,inf,a[x],-1); a[x]=y;
for(i=x;i<=n;i+=i&(-i)) insert(root[i],-inf,inf,a[x],1);
}else if(opt==4) {
pre(x,y);
int rank=askkfromx(-inf,inf,z);
pre(x,y);
printf("%d\n",askxfromk(-inf,inf,rank-1));
}else {
pre(x,y);
int rank=askkfromx(-inf,inf,z+1);
pre(x,y);
printf("%d\n",askxfromk(-inf,inf,rank));
}
}
}
BZOJ_3196_Tyvj 1730 二逼平衡树_树状数组套主席树的更多相关文章
- [bzoj3196][Tyvj1730]二逼平衡树_树套树_位置线段树套非旋转Treap/树状数组套主席树/权值线段树套位置线段树
二逼平衡树 bzoj-3196 Tyvj-1730 题目大意:请写出一个维护序列的数据结构支持:查询给定权值排名:查询区间k小值:单点修改:查询区间内定值前驱:查询区间内定值后继. 注释:$1\le ...
- BZOJ 3196 Tyvj 1730 二逼平衡树 ——树状数组套主席树
[题目分析] 听说是树套树.(雾) 怒写树状数组套主席树,然后就Rank1了.23333 单点修改,区间查询+k大数查询=树状数组套主席树. [代码] #include <cstdio> ...
- BZOJ 2141 排队(树状数组套主席树)
解法很多的题,可以块套树状数组,可以线段树套平衡树.我用的是树状数组套主席树. 题意:给出一段数列,m次操作,每次操作是交换两个位置的数,求每次操作后的逆序对数.(n,m<=2e4). 对于没有 ...
- Codeforces Round #404 (Div. 2) E. Anton and Permutation(树状数组套主席树 求出指定数的排名)
E. Anton and Permutation time limit per test 4 seconds memory limit per test 512 megabytes input sta ...
- BZOJ 1901 Zju2112 Dynamic Rankings ——树状数组套主席树
[题目分析] BZOJ这个题目抄的挺霸气. 主席树是第一时间想到的,但是修改又很麻烦. 看了别人的题解,原来还是可以用均摊的思想,用树状数组套主席树. 学到了新的姿势,2333o(* ̄▽ ̄*)ブ [代 ...
- ZOJ 2112 Dynamic Rankings(树状数组套主席树 可修改区间第k小)题解
题意:求区间第k小,节点可修改 思路:如果直接用静态第k小去做,显然我更改一个节点后,后面的树都要改,这个复杂度太高.那么我们想到树状数组思路,树状数组是求前缀和,那么我们可以用树状数组套主席树,求出 ...
- P2617 Dynamic Rankings(树状数组套主席树)
P2617 Dynamic Rankings 单点修改,区间查询第k大 当然是无脑树套树了~ 树状数组套主席树就好辣 #include<iostream> #include<cstd ...
- [COGS257]动态排名系统 树状数组套主席树
257. 动态排名系统 时间限制:5 s 内存限制:512 MB [问题描述]给定一个长度为N的已知序列A[i](1<=i<=N),要求维护这个序列,能够支持以下两种操作:1.查询A[ ...
- 洛谷P3759 [TJOI2017]不勤劳的图书管理员 【树状数组套主席树】
题目链接 洛谷P3759 题解 树状数组套主席树板题 #include<algorithm> #include<iostream> #include<cstring> ...
随机推荐
- jQuery插件学习基础
1.给jQuery添加全局的函数: $.zgz={ fn1:function(){ alert('我是刚设置的第一个全局函数') },fn2:function(){ alert('我是刚设置的第二个 ...
- Eclipse 3.5 以后安装插件很慢的解决办法
1 .除非你需要,否则不要选择"联接到所有更新站点" 在安装对话框里有一个小复选框,其标示为"在安装过程中联接到所有更新站点从而找到所需的软件."从表面上看,这 ...
- Tomcat的缺省是多少,怎么修改
Tomcat的缺省端口号是8080. 修改Tomcat端口号: 1.找到Tomcat目录下的conf文件夹 2.进入conf文件夹里面找到server.xml文件 3.打开server.xml文件 ...
- JAVA面试题集
基础知识: 1.C++或Java中的异常处理机制的简单原理和应用. 当JAVA程序违反了JAVA的语义规则时,JAVA虚拟机就会将发生的错误表示为一个异常.违反语义规则包括2种情况.一种是JAVA类库 ...
- Struts2 中的数据传输的几种方式
1. 如何将参数从界面传递到Action? 你可以把Struts2中的Action看做是Struts1的Action+ActionForm,即只需在Action中定义相关的属性(要有gette ...
- 对ManualResetEvent和AutoResetEvent的巩固练习
在多线程编程中,最常用到的就是线程同步问题,前段时间开发地址采集服务器,需要携带经纬度到MapAbc中采集后,返回地址,才可以进行下一条经纬度的采集,因为队列处理和解析不是同一个线程,并且是解析经纬度 ...
- 【精解】EOS标准货币体系与源码实现分析
EOS智能合约中包含一个exchange合约,它支持用户创建一笔交易,是任何两个基本货币类型之间的交易.这个合约的作用是跨不同币种(都是EOS上的标准货币类型)的,通过各自与EOS主链价值进行锚定,然 ...
- JavaScript头像上传器的实现
最近做这方面的东西,刚开始准备用一个开源项目:https://github.com/yueyoum/django-upload-avatar 后来发现这个开源组件的原设计者的定制化选项设计略显复杂,发 ...
- FPGA图像处理之行缓存(linebuffer)的设计一
FPGA图像处理之行缓存(linebuffer)的设计一 作者:OpenS_Lee 1 背景知识 在FPGA数字图像处理中,行缓存的使用非常频繁,例如我们需要图像矩阵操作的时候就需要进行缓存,例如图像 ...
- erlang的脚本执行---escript
1.概述: 作为程序员对于脚本语言应该很熟悉了,脚本语言的优点很多,如快速开发.容易编写.实时开发和执行, 我们常用的脚本有Javascript.shell.python等,我们的erlang语言也有 ...