克拉默法则:

先说一下为什么要写这个,作为一个大一新生,必须要学的就包括了线性代数,而且线性代数等数学知识对计算机专业也有很大帮助。但是在学习过程中遇到一个讲解的不清楚的知识点(Cramer's Rule),于是上网查询,但是出乎意料的是网上的证明方法都复杂且大多数都是用验证法,这对于数学的学习是及其没有帮助的,我作为一个数学爱好者就开始探索了。我坚信所有成立的公式都可以有一个显式的解读,不能读出来总是你打开的方式不对。

一、引理(行列式的性质)(参考书籍:Introduction to Linear Algebra,Gilbert Strang, Wellesley-Cambridge Press, ISBN:0980232775, 9780980232776, 2016.)

  1. 单位矩阵的行列式为1.
  2. 把矩阵A的行a加到矩阵A的行b,矩阵行列式不变(a≠b).
  3. 对角矩阵的行列式等于对角线元素乘积.
  4. detAB=(detA)(detB).//两个矩阵乘积的行列式等于两个矩阵的行列式的乘积.

以上引理均为转述,并非原文,有需要请查阅原书。

二、证明(注意表示单位矩阵,同某些书的 E)

第一步,将其化为它真正表达的意思

第二步,

det(I)=1,没错这个就证明结束了。

可能最后一步有人没有看懂,我解释一下。

我们用(j=1,2,3....n),来表示A的每一列,用

稍微看一下矩阵乘法,我们明白

而显然

也就是

而用引理2(把矩阵A的行a加到矩阵A的行b,矩阵行列式不变(a≠b).)可以将第j列除第j行以外的所有值减为0,

根据引理三(对角矩阵的行列式等于对角线元素乘积.).(或者也可以利用提出一行的公因子)

证毕。

引理的证明请看书或者自行百度。

如果以上结果有误,请联系我。

如果想要我证明其它公式的,请联系我。

如果有同样喜欢数学的,也可以一起探讨。

克拉默法则(Cramer's Rule)的证明的更多相关文章

  1. 【线性代数】5-3:克莱姆法则,逆和体积(Cramer's Rule,Inverses,and Volumes)

    title: [线性代数]5-3:克莱姆法则,逆和体积(Cramer's Rule,Inverses,and Volumes) categories: Mathematic Linear Algebr ...

  2. POJ 题目分类(转载)

    Log 2016-3-21 网上找的POJ分类,来源已经不清楚了.百度能百度到一大把.贴一份在博客上,鞭策自己刷题,不能偷懒!! 初期: 一.基本算法: (1)枚举. (poj1753,poj2965 ...

  3. HDU——PKU题目分类

    HDU 模拟题, 枚举1002 1004 1013 1015 1017 1020 1022 1029 1031 1033 1034 1035 1036 1037 1039 1042 1047 1048 ...

  4. (转)POJ题目分类

    初期:一.基本算法:     (1)枚举. (poj1753,poj2965)     (2)贪心(poj1328,poj2109,poj2586)     (3)递归和分治法.     (4)递推. ...

  5. poj分类

    初期: 一.基本算法:      (1)枚举. (poj1753,poj2965)      (2)贪心(poj1328,poj2109,poj2586)      (3)递归和分治法.      ( ...

  6. 转载 ACM训练计划

    leetcode代码 利用堆栈:http://oj.leetcode.com/problems/evaluate-reverse-polish-notation/http://oj.leetcode. ...

  7. poj 题目分类(1)

    poj 题目分类 按照ac的代码长度分类(主要参考最短代码和自己写的代码) 短代码:0.01K--0.50K:中短代码:0.51K--1.00K:中等代码量:1.01K--2.00K:长代码:2.01 ...

  8. POJ题目分类(按初级\中级\高级等分类,有助于大家根据个人情况学习)

    本文来自:http://www.cppblog.com/snowshine09/archive/2011/08/02/152272.spx 多版本的POJ分类 流传最广的一种分类: 初期: 一.基本算 ...

  9. 北大ACM题库习题分类与简介(转载)

    在百度文库上找到的,不知是哪位大牛整理的,真的很不错! zz题 目分类 Posted by fishhead at 2007-01-13 12:44:58.0 -------------------- ...

随机推荐

  1. Tomcat NIO

    说起Tomcat的NIO,不得不提的就是Connector这个Tomcat组件.Connector是Tomcat的连接器,其主要任务是负责处理收到的请求,并创建一个Request和Response的对 ...

  2. 网络配置及shell基础

    一:集群已做完 二:临时配置网络(ip,网关,dns)+永久配置 临时配置网络: ip:    [root@localhost ~]# ifconfig [root@localhost ~]# ifc ...

  3. 二、配置QtDesigner、PyUIC及PyRcc

    配置QtDesigner.PyUIC及PyRcc 安装完PyQt 5 及PyQt5-tools 后,则需要在Pycharm中配置QtDesigner.PyUIC及PyRcc. 配置QtDesigner ...

  4. Spring源码情操陶冶-任务定时器ConcurrentTaskScheduler

    承接前文Spring源码情操陶冶#task:scheduled-tasks解析器,本文在前文的基础上讲解单核心线程线程池的工作原理 应用附例 承接前文的例子,如下 <!--define bean ...

  5. jacascript 原生选项卡插件

    前言:这是笔者学习之后自己的理解与整理.如果有错误或者疑问的地方,请大家指正,我会持续更新! 在布局的时候,想到了很多以前看到过的案例,再次熟悉一下: a链接之间的竖线:可以用a链接的border-r ...

  6. java.lang.Class类

    第一次接触Class类是在学习 jdbc中.Class.forName()是Class类的一个静态方法,用于手动加载一个类,例如数据库驱动. 其实每一个java类都拥有或者说对应一个Class的实例对 ...

  7. 认识JQuery,JQuery的优势、语法、多库冲突、JS原生对象和JQuery对象之间相互转换和DOM操作,常用的方法

    (一)认识JQuery  JQuery是一个JavaScript库,它通过封装原生的JavaScript函数得到一套定义好的方法    JQuery的主旨:以更少的代码,实现更多的功能 (二)JQue ...

  8. Mysql之使用Mysql运算符

    Mysql运算符: 1.算术运算符 加减乘除与求模 SELECT 6+4 加法操作,      6-4 减法操作,      6*4 乘法操作,      6/2 除法操作,    6 DIV 2 除 ...

  9. [SDOI 2010]外星千足虫

    Description 题库链接 给出 \(m\) 个 \(n\) 元的 \(0,1\) 方程,即系数非 \(0\) 即 \(1\) ,方程的结果为奇偶性. \(1\leq n\leq 1000,1\ ...

  10. [SHOI 2008]Debt 循环的债务

    Description 题库链接 A 欠 B \(x_1\) 元, B 欠 C \(x_2\) 元, C 欠 A \(x_3\) 元.现每人手上各有若干张 100,50,20,10,5,1 钞票.问至 ...