BZOJ 3295: [Cqoi2011]动态逆序对 [CDQ分治]
RT
首先可以看成倒着插入,求逆序对数
每个数分配时间(注意每个数都要一个时间)$t$,$x$位置,$y$数值
$CDQ(l,r)$时归并排序$x$
然后用$[l,mid]$的加入更新$[mid+1,r]$的查询(其实每个数就是一个插入一个查询)
这里就是前后求逆序对,用树状数组
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long ll;
const int N=2e5+;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n,m;
int mp[N];
struct Operation{
int t,x,y;
Operation(){}
Operation(int t,int id,int v):t(t),x(id),y(v){}
bool operator <(const Operation &r)const{
return x==r.x ? y<r.y : x<r.x;
}
}a[N],t[N];
inline bool cmpTime(const Operation &a,const Operation &b){
return a.t==b.t ? a.x<b.x : a.t<b.t;
}
int c[N];
inline int lowbit(int x){return x&-x;}
inline void add(int p,int v){for(;p<=n;p+=lowbit(p)) c[p]+=v;}
inline int sum(int p){
int re=;
for(;p;p-=lowbit(p)) re+=c[p];
return re;
}
ll ans[N];
void CDQ(int l,int r){
if(l==r) return;
int mid=(l+r)>>;
CDQ(l,mid);CDQ(mid+,r);
int i=l,j=mid+,p=l;
while(i<=mid||j<=r){
if(j>r||(i<=mid&&a[i]<a[j])) add(a[i].y,),t[p++]=a[i++];
else ans[a[j].t]+=sum(n)-sum(a[j].y),t[p++]=a[j++];
}
for(int i=l;i<=mid;i++) add(a[i].y,-);
for(int i=l;i<=r;i++) a[i]=t[i];
for(int i=r;i>=l;i--){
if(a[i].t<=mid) add(a[i].y,);
else ans[a[i].t]+=sum(a[i].y);
}
for(int i=l;i<=r;i++) if(a[i].t<=mid) add(a[i].y,-);
}
int main(){
//freopen("inverse.in","r",stdin);
//freopen("inverse.out","w",stdout);
n=read();m=read();
for(int i=;i<=n;i++) a[i]=Operation(,i,read()),mp[a[i].y]=i;
int Tim=n;
for(int i=;i<=m;i++) a[mp[read()]].t=Tim--;
for(int i=;i<=n;i++) if(!a[i].t) a[i].t=Tim--;
sort(a+,a++n,cmpTime);
//for(int i=1;i<=10;i++) printf("hi %d %d %d\n",i,a[i].t,a[i].y);
CDQ(,n);
//for(int i=1;i<=10;i++) printf("ans %d %d\n",i,ans[i]);
for(int i=;i<=n;i++) ans[i]+=ans[i-];
for(int i=n;i>=n-m+;i--) printf("%lld\n",ans[i]);
}
【update 2017-03-17】
前两天学到了删除的姿势,逆序对问题的删除操作不用时间倒流也可以,直接减去它形成的逆序对数并且在树状数组中删除就可以了
虽然慢一些但是清晰多了
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long ll;
const int N=2e5+;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
} int n,Q,a[N],pos[N],x;
int m,tim;
struct meow{
int t,x,y,type,qid;
meow(){}
meow(int a,int b,int c,int d,int e=):t(a),x(b),y(c),type(d),qid(e){}
bool operator <(const meow &r) const{
return x==r.x ? y<r.y : x<r.x;
}
}q[N],t[N];
ll ans[N]; int c[N];
inline void add(int p,int v) {for(;p<=n;p+=(p&-p)) c[p]+=v;}
inline int sum(int p) {int re=; for(;p;p-=(p&-p)) re+=c[p]; return re;} void CDQ(int l,int r){
if(l==r) return;
int mid=(l+r)>>;
for(int i=l;i<=r;i++){
if(q[i].t<=mid) add(q[i].y,q[i].type);
else ans[q[i].qid]+= q[i].type*( sum(n)-sum(q[i].y) );
}
for(int i=l;i<=r;i++) if(q[i].t<=mid) add(q[i].y,-q[i].type); for(int i=r;i>=l;i--){
if(q[i].t<=mid) add(q[i].y,q[i].type);
else ans[q[i].qid]+= q[i].type*sum(q[i].y-);
}
for(int i=l;i<=r;i++) if(q[i].t<=mid) add(q[i].y,-q[i].type); int p1=l,p2=mid+;
for(int i=l;i<=r;i++){
if(q[i].t<=mid) t[p1++]=q[i];
else t[p2++]=q[i];
}
for(int i=l;i<=r;i++) q[i]=t[i];
CDQ(l,mid); CDQ(mid+,r);
} int main(){
freopen("in","r",stdin);
n=read(); Q=read();
for(int i=;i<=n;i++) a[i]=read(), pos[a[i]]=i, q[++m]=meow(++tim, i, a[i], , ); for(int i=;i<=Q;i++) x=read(), q[++m]=meow(++tim, pos[x], x, -, i);
sort(q+, q++m);
CDQ(,m);
for(int i=;i<=Q;i++) ans[i]+=ans[i-],printf("%lld\n",ans[i-]);
}
BZOJ 3295: [Cqoi2011]动态逆序对 [CDQ分治]的更多相关文章
- BZOJ 3295 [Cqoi2011]动态逆序对 ——CDQ分治
时间.位置.数字为三个属性. 排序时间,CDQ位置,树状数组处理数字即可. #include <cstdio> #include <cstring> #include < ...
- Bzoj 3295: [Cqoi2011]动态逆序对 分块,树状数组,逆序对
3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2886 Solved: 924[Submit][Stat ...
- [BZOJ3295][Cqoi2011]动态逆序对 CDQ分治&树套树
3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec Memory Limit: 128 MB Description 对于序列A,它的逆序对数定义为满足i<j,且 ...
- bzoj3295: [Cqoi2011]动态逆序对(cdq分治+树状数组)
3295: [Cqoi2011]动态逆序对 题目:传送门 题解: 刚学完cdq分治,想起来之前有一道是树套树的题目可以用cdq分治来做...尝试一波 还是太弱了...想到了要做两次cdq...然后伏地 ...
- BZOJ3295 [Cqoi2011]动态逆序对 —— CDQ分治
题目链接:https://vjudge.net/problem/HYSBZ-3295 3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec Memory Limit: 1 ...
- BZOJ 3295: [Cqoi2011]动态逆序对
3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3865 Solved: 1298[Submit][Sta ...
- 【BZOJ3295】[Cqoi2011]动态逆序对 cdq分治
[BZOJ3295][Cqoi2011]动态逆序对 Description 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依 ...
- bzoj 3295 [Cqoi2011]动态逆序对(cdq分治,BIT)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3295 [题意] n个元素依次删除m个元素,求删除元素之前序列有多少个逆序对. [思路] ...
- bzoj 3295: [Cqoi2011]动态逆序对(树套树 or CDQ分治)
Description 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依次删除m个元素,你的任务是在每次删除一个元素之前统计 ...
随机推荐
- python写一个邮箱伪造脚本
前言: 原本打算学php MVC的思路然后写一个项目.但是贼恶心, 写不出来.然后就还是用python写了个邮箱伪造. 0x01 第一步先去搜狐注册一个邮箱 然后,点开设置,开启SMTP服务. 当然你 ...
- CentOS 6.5 搭建 Zabbix
CentOS 6.5 搭建 Zabbix 说明: 操作系统:CentOS 6.5 IP地址:192.168.21.127 Web环境:Nginx+MySQL+PHP zabbix版本:Zabbix 2 ...
- TI-RTOS 控制LED灯
TI将FreeRtos放在自家芯片上,于是得到了TI-RTOS,两者的区别我还不太清楚,近日因为项目需要,开始试用TI-RTOS,先来一个点灯的实验吧,算是 hello world. 这次手上的板子是 ...
- Android初学:Gradle 'HelloWorld' project refresh failed
Gradle 'HelloWorld' project refresh failed Error:Failed to open zip file.Gradle's dependency cache m ...
- linux安装navicat全程记录
国庆期间自己在试着用linux(ubuntu),献上navicat安装方法,以及很多教程里没有写的一些小东西 step1: 去navicat官网下载安装包,网址:http://www.navicat. ...
- linux 树型显示文件 tree ls tree 命令
原创 2016年07月27日 09:50:19 yum install tree tree www │?? │?? │?? └── xml.test │?? │?? └── valgrind.su ...
- PHP结合Ueditor并修改图片上传路径
投稿:hebedich 字体:[增加 减小] 类型:转载 时间:2016-10-16 我要评论 使用ueditor编辑器,附件默认在ueditor/php/upload/, 但是大家的附件地址的默认路 ...
- As a Start - 毫厘之间,宇宙之外
序 突然想聊聊多重宇宙——多重宇宙,这听上去像是一个科幻概念,但是严肃思考这一个问题时,将会带我们进入一个全新的格局和世界. 对宇宙学家而言,研究多重宇宙并不仅仅是为了猜测平行世界里某一历史事件是否有 ...
- ios开发 第一天
alloc 分配内存(类方法) init 调用构造函数 id可以替代任何数据类型(不加*号) 错误现象: 2013-06-27 21:44:21.769 FieldButtonFun[3465:113 ...
- Cannot complete the install because one or more required items could not be found
弄了一天的subclipse也没装上,郁闷~~~~~~~~ 无论采用本地安装还是站点安装都不行,在安装的时候显示错误: Cannot complete the install because one ...