原题链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1061

题意:问你如何购买志愿者使得满足题意的总费用最小。

解题思路:首先,由于志愿者存在的时间是一个区间,我们考虑使用差分序列,这样的话我们就可以比较轻松的建图跑一遍最小费用最大流了。我们定义每个中间点代表着每一天,显然第i天需要的志愿者是i-1天的志愿者+x,用差分即可完成。建图方式详见AC代码。

附:AC代码(因为我比较蒻,所以打了low的一逼的SPFAcostflow,所以跑的巨慢。)

#include<stdio.h>
#include<string.h>
#define S 0
#define T 1002
#define MAXN 1005
#define inf 0x7fffffff
#define min(a,b) (a<b?a:b)
struct zxy{int to,next,v,c;}edge[];
int n,m,cnt=,head[MAXN],dis[MAXN],pre[MAXN],que[MAXN];
bool vis[MAXN];
inline void ins(int x,int y,int v,int l){
edge[++cnt].to=y,edge[cnt].c=l,edge[cnt].v=v,edge[cnt].next=head[x],head[x]=cnt;
}
inline void insw(int x,int y,int v,int l){ins(x,y,v,l); ins(y,x,,(-)*l);}
inline int in(){
int x=,f=;char ch=getchar();
while(ch<''||ch>'') f=ch=='-'?-:,ch=getchar();
while(ch>=''&&ch<='') x=x*+ch-'',ch=getchar();
return x*f;
}
inline bool SPFA_costflow(int s,int e){
register int h=,t=,w,v;
memset(dis,/,sizeof(dis));
dis[s]=,vis[s]=,que[]=s;
while(h!=t){
(++h)%=MAXN;
w=que[h];
for (register int i=head[w]; i; i=edge[i].next){
v=edge[i].to;
if (dis[v]>dis[w]+edge[i].c&&edge[i].v){
dis[v]=dis[w]+edge[i].c;pre[v]=i;
if (!vis[v]){
vis[v]=;
if (dis[v]<dis[que[h+]]){
que[h]=v;h=(h-+MAXN)%MAXN;
}
else{
(++t)%=MAXN;que[t]=v;
}
}
}
}
vis[w]=;
}
return dis[e]!=dis[MAXN-];
}
int costflow(int s,int t){
int cost=;
while(SPFA_costflow(s,t)){
int mi=inf;
for (register int i=t; i; i=edge[pre[i]^].to)
mi=min(mi,edge[pre[i]].v);
for (register int i=t; i; i=edge[pre[i]^].to)
edge[pre[i]].v-=mi,edge[pre[i]^].v+=mi;
cost+=mi*dis[t];
}
return cost;
}
void init(){
n=in(),m=in();int x=,pre=;
for (int i=; i<=n; ++i){
register int t=in(); x=t-pre;pre=t;
if (x>) insw(S,i,x,);
else insw(i,T,(-)*x,);
insw(i+,i,inf,);
}
insw(n+,T,inf,);
for (register int i=; i<=m; ++i){
register int l=in(),r=in(),v=in();
insw(l,r+,inf,v);
}
}
int main(){
init();
printf("%d",costflow(S,T));
}

【网络流】【BZOJ1061】【NOI2008】志愿者招募的更多相关文章

  1. 网络流解线性规划问题 BZOJ1061: [Noi2008]志愿者招募

    线性规划定义: 在给定有限的资源和竞争约束情况下,很多问题都可以表述为最大化或最小化某个目标.如果可以把目标指定为某些变量的线性函数,而且如果可以将资源约束指定为这些变量的等式或不等式,则得到了一个线 ...

  2. [BZOJ1061][Noi2008]志愿者招募

    [BZOJ1061][Noi2008]志愿者招募 试题描述 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难 题:为即将启动的奥运新项目招募一批短期志愿 ...

  3. 【费用流】BZOJ1061: [Noi2008]志愿者招募(这题超好)

    1061: [Noi2008]志愿者招募 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 5291  Solved: 3173[Submit][Stat ...

  4. 【费用流】BZOJ1061[NOI2008]-志愿者招募

    [题目大意] 一个项目需要n天完成,其中第i天至少需要Ai个人.共有m类人可以招募,其中第i类可以从第Si天做到第Ti天,每人的招募费用为Ci元.求最小招募费用. [思路] byvoid神犇的建图详解 ...

  5. [BZOJ1061] [Noi2008] 志愿者招募 (费用流)

    Description 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难 题:为即将启动的奥运新项目招募一批短期志愿者.经过估算,这个项目需要N 天才能 ...

  6. BZOJ1061 [Noi2008]志愿者招募 【单纯形】

    题目链接 BZOJ1061 题解 今天终于用正宗的线性规划\(A\)了这道题 题目可以看做有\(N\)个限制和\(M\)个变量 变量\(x_i\)表示第\(i\)种志愿者的人数,对于第\(i\)种志愿 ...

  7. BZOJ1061: [Noi2008]志愿者招募(线性规划)

    Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 5725  Solved: 3437[Submit][Status][Discuss] Descript ...

  8. BZOJ1061 NOI2008 志愿者招募 线性规划、费用流

    传送门 一道思路很妙的线性规划网络流 设\(X_i\)表示第\(i\)天需要的人数,\(P_i\)表示第\(i\)种人雇佣的个数 那么我们可以列出一系列式子 比如说样例就可以列出三个式子: \(P_1 ...

  9. [BZOJ1061][Noi2008]志愿者招募 线性规划+费用流

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1061 根据题意列方程,然后用网络流解线性规划. 题解直接贴ByVoid的吧,太神了:htt ...

  10. 线性规划费用流解法(Bzoj1061: [Noi2008]志愿者招募)

    题面 传送门 Sol 线性规划费用流解法用与求解未知数为非负数的问题 这道题可以列出一堆形如 \(x[i]+x[j]+x[k]+...>=a[p]\) 的不等式 我们强行给每个式子减去一个东西, ...

随机推荐

  1. tornado options

    tornado.options.define() 用来定义options选项变量的方法,定义的变量可以在全局的tornado.options.options中获取使用,传入参数: name 选项变量名 ...

  2. 浏览器关闭后,Session会话结束了么?

    今天想和大家分享一个关于Session的话题: 当浏览器关闭时,Session就被销毁了? 我们知道Session是JSP的九大内置对象(也叫隐含对象)中的一个,它的作用是可以保 存当前用户的状态信息 ...

  3. Raid 5数据恢复原理以及raid 5数据恢复实际操作案例

    Raid 5数据恢复算法原理 要理解 raid 5数据恢复原理首先要先认识raid5,"分布式奇偶校验的独立磁盘结构"也就是我们称之为的raid 5数据恢复有一个概念需要理解,也就 ...

  4. 使用静态基类方案让 ASP.NET Core 实现遵循 HATEOAS Restful Web API

    Hypermedia As The Engine Of Application State (HATEOAS) HATEOAS(Hypermedia as the engine of applicat ...

  5. linux下面的打包压缩命令

    tar命令 tar [-cxtzjvfpPN] 文件与目录 ....linux下面压缩之前要把一堆文件打个包再压缩,即使只有一个文件也需要打个包.例子:tar czvf 1.tar.gz hello. ...

  6. 关于python爬虫经常要用到的一些Re.正则表达式

    转载:https://blog.csdn.net/skyeyesxy/article/details/50837984 1.正则表达式的常用符号与方法 常用符号:点号,星号,问号与括号(小括号) (. ...

  7. 解决SoapFault (looks like we got no XML document)问题

    今天在调试项目的时候出现下面的错误信息: SoapFault looks like we got no XML document (D:\phpStudy\WWW\self.shop.xunmall. ...

  8. spring-oauth-server实践:授权方式四:client_credentials 模式下有效期内重复申请 access_token ?

    spring-oauth-server入门(1-12)授权方式四:client_credentials 模式下有效期内重复申请 access_token ? 一.失效重建邏輯 二.如果沒有失效,不会重 ...

  9. SpringCloud的服务网关zuul

    演示如何使用api网关屏蔽各服务来源 一.概念和定义 1.zuul最终还是使用Ribbon的,顺便测试一下Hystrix断路保护2.zuul也是一个EurekaClient,访问服务注册中心,获取元数 ...

  10. C++中const对象和非const对象调用成员函数问题

    一.类MyClass 二.主函数调用 三.结果