M斐波那契数列F[n]是一种整数数列,它的定义如下:

F[0] = a
F[1] = b
F[n] = F[n-1] * F[n-2] ( n > 1 )

现在给出a, b, n,你能求出F[n]的值吗?

 
Input
输入包含多组测试数据;
每组数据占一行,包含3个整数a, b, n( 0 <= a, b, n <= 10^9 )
 
Output
对每组测试数据请输出一个整数F[n],由于F[n]可能很大,你只需输出F[n]对1000000007取模后的值即可,每组数据输出一行。
 
Sample Input
0 1 0
6 10 2
 
Sample Output
0
60

把F往后递推可以看出是  f(n)=a^fib(n-1)*b^fib(n),n>=2,然后发现正常推fib并不行,超时(表示并不会用矩阵求)

这题主要是求出fib数列,然后再进行快速幂即可。

费马小定理:如果p为质数且a,p互质      a^(p-1) = 1(mod  p)

所以 a^n = a^(  n%(p-1) ) * 1 * 1........     (最开始一直不理解费马是怎么转换过来的)

通俗点:

A^B %C   这题的C是质素,而且A,C是互质的。
所以直接A^(B%(C-1)) %C     (来自kuangbin大神)

用矩阵快速幂求出fib数列基本就搞定
(矩阵部分不会写,果然太菜,啥都不会- -)

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define N 10100
typedef long long ll;
using namespace std;
int n,m;
unsigned long long a[N],ins[70];
bool flag;
struct Matrix
{
ll p[2][2];
}; Matrix mul(Matrix a, Matrix b) //矩阵相乘
{
Matrix res;
for(int i = 0; i < 2; i++)
for(int j = 0; j < 2; j++)
{
res.p[i][j] = 0;
for(int k = 0; k < 2; k++)
{
res.p[i][j] += a.p[i][k] * b.p[k][j];
res.p[i][j] %= 1000000006;
}
}
return res;
} Matrix pow_matrix(Matrix a, ll n) //矩阵快速幂
{
Matrix res;
res.p[0][0] = res.p[1][1] = 1;
res.p[0][1] = res.p[1][0] = 0;
while(n != 0)
{
if(n & 1)
res = mul(res, a);
a = mul(a, a);
n >>= 1;
}
return res;
}
ll pow_mod(ll a, ll n) //二分快速幂
{
if(n == 0) return 1;
ll x =pow_mod(a,n/2);
ll ans = x*x%1000000007;
if(n % 2) ans = ans*a%1000000007;
return ans;
} int main()
{
int a,b,n;
Matrix tmp;
tmp.p[0][0] = 0;
tmp.p[0][1] = tmp.p[1][1] = tmp.p[1][0] = 1;
while(scanf("%d%d%d",&a,&b,&n)!=EOF)
{
Matrix q = pow_matrix(tmp,n);
ll ans = 1;
ans = (pow_mod(a, q.p[0][0]) * pow_mod(b, q.p[1][0])) % 1000000007;
printf("%I64d\n",ans);
}
return 0;
}

  

hdu4549(费马小定理 + 快速幂)的更多相关文章

  1. 数论 --- 费马小定理 + 快速幂 HDU 4704 Sum

    Sum Problem's Link:   http://acm.hdu.edu.cn/showproblem.php?pid=4704 Mean: 给定一个大整数N,求1到N中每个数的因式分解个数的 ...

  2. 2014多校第一场 I 题 || HDU 4869 Turn the pokers(费马小定理+快速幂模)

    题目链接 题意 : m张牌,可以翻n次,每次翻xi张牌,问最后能得到多少种形态. 思路 :0定义为反面,1定义为正面,(一开始都是反), 对于每次翻牌操作,我们定义两个边界lb,rb,代表每次中1最少 ...

  3. BZOJ_[HNOI2008]_Cards_(置换+Burnside引理+乘法逆元+费马小定理+快速幂)

    描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1004 共n个卡片,染成r,b,g三种颜色,每种颜色的个数有规定.给出一些置换,可以由置换得到的 ...

  4. hdu_4869(费马小定理+快速幂)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4869 Turn the pokers Time Limit: 2000/1000 MS (Java/O ...

  5. HDU 4704 Sum(隔板原理+组合数求和公式+费马小定理+快速幂)

    题目传送:http://acm.hdu.edu.cn/showproblem.php?pid=4704 Problem Description   Sample Input 2 Sample Outp ...

  6. hdu1576-A/B-(同余定理+乘法逆元+费马小定理+快速幂)

    A/B Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  7. 牛客训练四:Applese 涂颜色(费马小定理+快速幂)

    题目链接:传送门 思路: 考虑每一列有2种颜色,总共有n行,每一行的第一个格确定颜色,由于左右颜色不相同,后面的行就确定了. 所以总共有2^n中结果. 由于n太大,所以要用到费马小定理a^n%mod= ...

  8. hdu 4704 sum(费马小定理+快速幂)

    题意: 这题意看了很久.. s(k)表示的是把n分成k个正整数的和,有多少种分法. 例如: n=4时, s(1)=1     4 s(2)=3     1,3      3,1       2,2 s ...

  9. hdu-5667 Sequence(矩阵快速幂+费马小定理+快速幂)

    题目链接: Sequence Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 65536/65536 K (Java/Others) ...

随机推荐

  1. Linux学习--进程概念

    >>进程 说进程,感觉好空洞,来一张图,Linux下的进程: ps -eo pid,comm,cmd 说明:-e表示列出全部进程,-o pid,comm,cmd表示我们需要PID,COMM ...

  2. Flask 学习 十四 测试

    获取代码覆盖报告 安装代码覆盖工具 pip install coverage manage.py 覆盖检测 COV = None if os.environ.get('FLASK_COVERAGE') ...

  3. Binary Tree Xorder Traversal

     * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeN ...

  4. 再议Python协程——从yield到asyncio

    协程,英文名Coroutine.前面介绍Python的多线程,以及用多线程实现并发(参见这篇文章[浅析Python多线程]),今天介绍的协程也是常用的并发手段.本篇主要内容包含:协程的基本概念.协程库 ...

  5. 安装nodejs时:The error code is 2503.

    在windows下安装nodejs时老是报错: The installer has encountered an unexpected error installing . 有三种方法可以尝试: &q ...

  6. JS刷题总结

    多总结,才能更好地进步,分享下最近的刷题总结给大家吧 关于缩减代码 1.善用js中的函数或者特性. (迭代.解构.set等等) //使用箭头函数缩减代码 //处理输入,可以用.map,需要注意其所有参 ...

  7. 新概念英语(1-7)Are you a teacher?

    What is Robert's job? A:I am a new student. My name is Robert. B:Nice to meet you. My name's Sophie. ...

  8. LDAP apacheds解决方案

    Apache DS 配置与管理   LADP基本介绍 LDAP(轻量级目录访问协议)以目录的形式来管理资源(域用户,用户组,地址簿,邮件用户,打印机等等).   特点: 1. LDAP是一种网略协议而 ...

  9. mybatis批量插入

    <insert id="insertBatch" parameterType="java.util.List" > insert into biz_ ...

  10. [洛谷P2234][HNOI2002] 营业额统计 - Treap

    Description Tiger最近被公司升任为营业部经理,他上任后接受公司交给的第一项任务便是统计并分析公司成立以来的营业情况. Tiger拿出了公司的账本,账本上记录了公司成立以来每天的营业额. ...