题链:

http://www.lydsy.com/JudgeOnline/problem.php?id=1444
题解.1:

概率dp,矩阵乘法,快速幂。
对所有串建立AC自动机,
那么如果在trie树的节点上转移到一个打了标记的节点,就意味着该标记对应的人取得胜利。
(由于题中明确说明串长相同,串又互不相同,所以即表明着建立AC自动机后整个trie树中只有n个打了标记的节点,同时不会存在某些节点无法转移的问题。)
然后建立trie.size×trie.size大小的转移矩阵trans,每个位置trans(i,j)表示i节点转移到j节点的概率:
初始矩阵:
if(trie.tag[i]) trans(i,i)=1;
else trans(i,trie.ch[i][c])+=p[c](枚举接下来的字符c)
此时这个矩阵的每个位置(i,j)就表明,从i走一步到j的概率。
然后将矩阵自乘很多次,就可以得到每个位置表示(i,j)从i走很多很多次后到j的概率。
那么答案就是trans(1,i).(i为打了tag标记的节点):表示从初始位置走了很多很多次后到了一个串结尾位置的概率。
由于数据小,同时矩阵转移了很多次,可以把矩阵里存的十分接近理论概率值的概率直接看成答案。
复杂度((nl)^3logP)(转移了P次矩阵,我定的是转移23336666233336666ll多次)

代码.1:

#include<bits/stdc++.h>
#define MAXN 15
using namespace std;
int N,M,L;
int pos[MAXN];
double p[MAXN];
struct Matrix{
int r,c;
double a[MAXN*MAXN][MAXN*MAXN];
void Reset(int _r,int _c){
r=_r; c=_c; memset(a,0,sizeof(a));
}
void Identity(){
for(int i=1;i<=r;i++) a[i][i]=1;
}
Matrix operator * (const Matrix &rtm) const{
Matrix now; now.Reset(r,rtm.c);
for(int i=1;i<=now.r;i++)
for(int j=1;j<=now.c;j++)
for(int k=1;k<=c;k++)
now.a[i][j]+=a[i][k]*rtm.a[k][j];
return now;
}
Matrix operator ^ (long long b) const{
Matrix now,base; base=*this;
now.Reset(r,c); now.Identity();
for(;b;base=base*base,b>>=1)
if(b&1) now=now*base;
return now;
}
};
struct Trie{
int size,p;
int ch[MAXN*MAXN][MAXN],tag[MAXN*MAXN];
Trie():size(1){}
void Insert(char *S){
static int cnt; p=1;
for(int i=0;i<L;i++){
int c=S[i]-'A';
if(!ch[p][c]) ch[p][c]=++size;
p=ch[p][c];
}
tag[p]=1; pos[++cnt]=p;
}
}T;
struct ACAM{
int fail[MAXN*MAXN];
void Build(){
static queue<int>Q;
Q.push(1); fail[1]=0;
while(!Q.empty()){
int u=Q.front(); Q.pop();
T.tag[u]|=T.tag[fail[u]];
for(int c=0;c<M;c++){
int k=fail[u];
if(!T.ch[u][c]){
T.ch[u][c]=k?T.ch[k][c]:1;
continue;
}
while(k&&!T.ch[k][c]) k=fail[k];
fail[T.ch[u][c]]=k?T.ch[k][c]:1;
Q.push(T.ch[u][c]);
}
}
}
}A;
int main(){
Matrix trans;
static char S[MAXN];
ios::sync_with_stdio(0);
cin>>N>>L>>M;
for(int i=0,a,b;i<M;i++)
cin>>a>>b,p[i]=1.0*a/b;
for(int i=1;i<=N;i++)
cin>>S,T.Insert(S);
A.Build();
trans.Reset(T.size,T.size);
for(int i=1;i<=T.size;i++){
if(T.tag[i]) trans.a[i][i]=1;
else for(int c=0;c<M;c++)
trans.a[i][T.ch[i][c]]+=p[c];
}
trans=trans^23336666233336666ll;
cout<<fixed<<setprecision(2);
for(int i=1;i<=N;i++)
cout<<trans.a[1][pos[i]]<<endl;
return 0;
}

  

题解.2:

期望dp,高斯消元
对所有串建立AC自动机,那么问题就转变为类似 BZOJ_3143_[Hnoi2013]游走 这种题目。
令dp[i]表示经过trie树上的i号节点的期望次数,pro[j][i]表示从j点转移到i点的概率。
那么就可以列出如下转移方程:
$$dp[i]=\sum_{j->i}{dp[j]*pro[j][i]}$$
特别的:
1.当j为trie树是被打了个tag标记的节点时,则不能转移给其他节点
2.当i为1号节点时,要多加一个数值1表示刚开始就期望经过了一次。
上述式子的转移存在环,需要高斯消元。

因为到达了有tag标记的节点就结束游戏不再转移,所以期望到达所有tag节点的次数为1
也就是说,每个tag节点的期望就等于到达该节点对应的人胜利的概率。

复杂度O((nl)³)

代码.2:

#include<bits/stdc++.h>
#define MAXN 15
using namespace std;
const double eps=1e-8;
int N,M,L,fail;
int id[MAXN];
double a[MAXN*MAXN][MAXN*MAXN],g[MAXN],dp[MAXN*MAXN];
double *A[MAXN*MAXN];
int dcmp(double x){
if(fabs(x)<eps) return 0;
return x>0?1:-1;
}
struct ACAM{
int size;
int ch[MAXN*MAXN][MAXN],tag[MAXN*MAXN],fail[MAXN*MAXN];
ACAM():size(1){}
void Insert(char *S){
static int p,cnt; p=1; bool fg=0;
for(int i=0;i<L;i++){
int c=S[i]-'A';
if(!ch[p][c]) ch[p][c]=++size;
p=ch[p][c];
}
tag[p]=1; id[++cnt]=p;
}
void Build(){
static queue<int>Q;
Q.push(1); fail[1]=0;
while(!Q.empty()){
int u=Q.front(); Q.pop();
tag[u]|=tag[fail[u]];
for(int c=0;c<M;c++){
int k=fail[u];
if(!ch[u][c]){
ch[u][c]=k?ch[k][c]:1;
continue;
}
while(k&&!ch[k][c]) k=fail[k];
fail[ch[u][c]]=k?ch[k][c]:1;
Q.push(ch[u][c]);
}
}
}
}DS;
void buildequation(){
for(int i=1;i<=DS.size;i++) if(!DS.tag[i])
for(int c=0;c<M;c++)
a[DS.ch[i][c]][i]+=g[c];
for(int i=1;i<=DS.size;i++) a[i][i]+=-1;
a[1][DS.size+1]+=-1;
for(int i=1;i<=DS.size;i++) A[i]=a[i];
}
void Gausselimination(int pos,int i){
if(pos==DS.size+1||i==DS.size+1) return;
for(int j=pos;j<=DS.size;j++) if(dcmp(A[j][i])!=0){
swap(A[j],A[pos]); break;
}
if(dcmp(A[pos][i])!=0)
for(int j=pos+1;j<=DS.size;j++){
double k=A[j][i]/A[pos][i];
for(int l=i;l<=DS.size+1;l++)
A[j][l]-=k*A[pos][l];
}
Gausselimination(pos+(dcmp(A[pos][i])!=0),i+1);
if(dcmp(A[pos][i])!=0){
for(int l=i+1;l<=DS.size;l++)
dp[i]+=A[pos][l]*dp[l];
dp[i]=A[pos][DS.size+1]-dp[i];
dp[i]=dp[i]/A[pos][i];
}
}
int main(){
static char S[15];
ios::sync_with_stdio(0);
cin>>N>>L>>M;
for(int i=0,P,Q;i<M;i++)
cin>>P>>Q,g[i]=1.0*P/Q;
for(int i=1;i<=N;i++)
cin>>S,DS.Insert(S);
DS.Build();
buildequation();
Gausselimination(1,1);
cout<<fixed<<setprecision(2);
for(int i=1;i<=N;i++)
cout<<fabs(dp[id[i]])<<endl;
return 0;
}

  

●BZOJ 1444 [Jsoi2009]有趣的游戏的更多相关文章

  1. BZOJ 1444:[JSOI2009]有趣的游戏

    BZOJ 1444:[JSOI2009]有趣的游戏 题目链接 首先我们建出Trie图,然后高斯消元. 我们设\(f_i\)表示经过第\(i\)个点的期望次数: \[ f_x=\sum i\cdot p ...

  2. BZOJ:4820: [Sdoi2017]硬币游戏&&BZOJ:1444: [Jsoi2009]有趣的游戏(高斯消元求概率)

    1444: [Jsoi2009]有趣的游戏 4820: [Sdoi2017]硬币游戏 这两道题都是关于不断随机生成字符后求出现给定字符串的概率的问题. 第一题数据范围较小,将串建成AC自动机以后,以A ...

  3. BZOJ 1444: [Jsoi2009]有趣的游戏 [AC自动机 高斯消元]

    1444: [Jsoi2009]有趣的游戏 题意:每种字母出现概率\(p_i\),有一些长度len的字符串,求他们出现的概率 套路DP的话,\(f[i][j]\) i个字符走到节点j的概率,建出转移矩 ...

  4. BZOJ 1444 [Jsoi2009]有趣的游戏 (AC自动机 + 概率DP + Gauss)

    1444: [Jsoi2009]有趣的游戏 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1382  Solved: 498[Submit][Statu ...

  5. bzoj 1444: [Jsoi2009]有趣的游戏【AC自动机+dp+高斯消元】

    https://blog.sengxian.com/solutions/bzoj-1444 orz 一直是我想错了,建出AC自动机之后,实际上这个定义是设f[i]为经过i节点的 * 期望次数 * ,因 ...

  6. BZOJ 1444 [JSOI2009]有趣的游戏 (AC自动机、概率与期望DP、矩阵乘法)

    诶这题洛谷居然没有??? 题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1444 题解: 我见到主要有三种做法. 一是矩阵乘法.设\(d ...

  7. BZOJ 1444 [JSOI2009]有趣的游戏 (Trie图/AC自动机+矩阵求逆)

    题目大意:给你$N$个长度相等且互不相同的模式串,现在有一个字符串生成器会不断生成字符,其中每个字符出现的概率是$p_{i}/q_{i}$,当生成器生成的字符串包含了某个模式串,则拥有该模式串的玩家胜 ...

  8. BZOJ 1444: [Jsoi2009]有趣的游戏 AC自动机+概率与期望+矩阵乘法

    这道题还比较友好~首先,构建出来 $AC$ 自动机,那么我们要求的就是从 $0$ 号点走无限次走到一个终止节点的概率. 考虑构建转移矩阵 $M,$ $M_{i,j}$ 表示节点 $i$ 转移到节点 $ ...

  9. 1444: [Jsoi2009]有趣的游戏

    1444: [Jsoi2009]有趣的游戏 链接 分析: 如果一个点回到0号点,那么会使0号点的概率增加,而0号点的概率本来是1,不能增加,所以这题用期望做. 设$x_i$表示经过i的期望次数,然后初 ...

随机推荐

  1. mongodb 复制(副本集)

    复制(副本集) 什么是复制 复制提供了数据的冗余备份,并在多个服务器上存储数据副本,提高了数据的可用性,并可以保证数据的安全性 复制还允许从硬件故障和服务中断中恢复数据 为什么要复制 数据备份 数据灾 ...

  2. Storm概念讲解和工作原理介绍

    Strom的结构 Storm与传统关系型数据库     传统关系型数据库是先存后计算,而storm则是先算后存,甚至不存     传统关系型数据库很难部署实时计算,只能部署定时任务统计分析窗口数据   ...

  3. .Net Core MongoDB 简单操作。

    一:MongoDB 简单操作类.这里引用了MongoDB.Driver. using MongoDB.Bson; using MongoDB.Driver; using System; using S ...

  4. ArrayList源码学习----JDK1.7

    什么是ArrayList? ArrayList是存储一组数据的集合,底层也是基于数组的方式实现,实际上也是对数组元素的增删改查:它的主要特点是: 有序:(基于数组实现) 随机访问速度快:(进行随机访问 ...

  5. kubernetes进阶(05)kubernetes的命令

    在Kubernetes中,Node.Pod.Replication Controller.Service等概念都可以看作一种资源对象,通过Kubernetes提供的Kubectl工具或者API调用进行 ...

  6. ELK学习总结(2-6)elk的mapping

    1.什么是映射 映射:创建索引的时候,预先定义字段的类型及相关属性 作用:这样会让索引建立的更加细致和完善,如:是否存储.使用何种分析器.重要级别 分类:静态映射和动态映射 2.字段类型:string ...

  7. python学习之路01

    python自己也自学过一段时间了,看过视频,也买过几本基础的书来看,目前为止对于一些简单的代码还是可以看懂,但是自己总是觉得缺少些什么,可能是缺少系统化的学习,也可能是缺少实际项目经验,对于这些缺少 ...

  8. python实现:最长子字符串

    给定一个字符串 s 和正整数 n,请使用你熟悉的编程语言输出 s 中包含不超过 n 种字符的最长子串,如 s="uabbcadbaef",n=4 时应该输出 "abbca ...

  9. Dapper中条件为In的写法

    今天用Dapper更新是用到了IN写法,园子里找了篇文章这样写到 传统sql in (1,2,3) 用dapper就这样写 conn.Query<Users>("SELECT * ...

  10. python Mysql 库表

    Mysql 库表    创建 学生信息库表  学生成绩 库表