[ HAOI 2010 ] 最长公共子序列
\(\\\)
\(Description\)
求两个长度\(\le5000\)的大写字母串的\(LCS\)长度及个数,定义两\(LCS\)中某一字符在两序列出现位置有一处不同就视为不同。
\(\\\)
\(Solution\)
既然是基于下标不同的LCS那不就可以随便乱搞
求\(LCS\)的时候定义\(f[i][j]\)表示第一个序列处理到第\(i\)个位置,第二个序列处理到第\(j\)个位置时\(LCS\)的长度,类似的定义\(g[i][j]\)为该情况下\(LCS\)的个数。
大力\(DP\)就好,\(f[i][j]\)照常转移,\(g[i][j]\)需要根据转移的情况讨论:
首先若最后得到的答案转移自\(f[i-1][j]\)或\(f[i][j-1]\),那么要加上对应的方案数
若发现\(f[i-1][j-1]=f[i][j]\),证明新加的两个字符都没有用到,而累加了两次,所以要减掉
最后若转移还有\(s1[i]=s2[i]\)的情况,方案数也要对应加上\(f[i-1][j-1]\),注意到这一情况与上一情况必定是不同的,所以无需考虑冲突的部分。
直接开存不下,滚动数组。
\(\\\)
\(Code\)
#include<cmath>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define N 5010
#define R register
#define gc getchar
#define mod 100000000
using namespace std;
char s1[N],s2[N];
int tot1,tot2,f[2][N],g[2][N];
int main(){
char c=gc();
while(!isupper(c)) c=gc();
s1[tot1=1]=c;
while(isupper(c=gc())) s1[++tot1]=c;
while(!isupper(c)) c=gc();
s2[tot2=1]=c;
while(isupper(c=gc())) s2[++tot2]=c;
g[1][0]=1;
for(R int i=0;i<=tot2;++i) g[0][i]=1;
for(R int i=1,now;i<=tot1;++i){
now=i&1;
for(R int j=1;j<=tot2;++j){
g[now][j]=0;
f[now][j]=max(f[now^1][j],f[now][j-1]);
if(s1[i]==s2[j]) f[now][j]=max(f[now][j],f[now^1][j-1]+1);
if(s1[i]==s2[j]) (g[now][j]+=g[now^1][j-1])%=mod;
if(f[now^1][j]==f[now][j]) (g[now][j]+=g[now^1][j])%=mod;
if(f[now][j-1]==f[now][j]) (g[now][j]+=g[now][j-1])%=mod;
if(f[now^1][j-1]==f[now][j]) (g[now][j]+=mod-g[now^1][j-1])%=mod;
}
}
printf("%d\n%d",f[tot1&1][tot2],g[tot1&1][tot2]);
return 0;
}
[ HAOI 2010 ] 最长公共子序列的更多相关文章
- 经典递归问题:0,1背包问题 kmp 用遗传算法来解背包问题,hash表,位图法搜索,最长公共子序列
0,1背包问题:我写笔记风格就是想到哪里写哪里,有很多是旧的也没删除,代码内部可能有很多重复的东西,但是保证能运行出最后效果 '''学点高大上的遗传算法''' '''首先是Np问题的定义: npc:多 ...
- DP_最长公共子序列/动规入门
学自:https://open.163.com/movie/2010/12/L/4/M6UTT5U0I_M6V2U1HL4.html 最长公共子序列:(本文先谈如何求出最长公共子序列的长度,求出最长公 ...
- 用python实现最长公共子序列算法(找到所有最长公共子串)
软件安全的一个小实验,正好复习一下LCS的写法. 实现LCS的算法和算法导论上的方式基本一致,都是先建好两个表,一个存储在(i,j)处当前最长公共子序列长度,另一个存储在(i,j)处的回溯方向. 相对 ...
- 动态规划之最长公共子序列(LCS)
转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...
- [Data Structure] LCSs——最长公共子序列和最长公共子串
1. 什么是 LCSs? 什么是 LCSs? 好多博友看到这几个字母可能比较困惑,因为这是我自己对两个常见问题的统称,它们分别为最长公共子序列问题(Longest-Common-Subsequence ...
- 动态规划求最长公共子序列(Longest Common Subsequence, LCS)
1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...
- LintCode 77: 最长公共子序列
public class Solution { /** * @param A, B: Two string. * @return: the length of the longest common s ...
- 删除部分字符使其变成回文串问题——最长公共子序列(LCS)问题
先要搞明白:最长公共子串和最长公共子序列的区别. 最长公共子串(Longest Common Substirng):连续 最长公共子序列(Longest Common Subsequence,L ...
- LCS(Longest Common Subsequence 最长公共子序列)
最长公共子序列 英文缩写为LCS(Longest Common Subsequence).其定义是,一个序列 S ,如果分别是两个或多个已知序列的子序列,且是所有符合此条件序列中最长的,则 S 称为已 ...
随机推荐
- Ioc思想
DIP: Dependency Inversion Principle 依赖倒转原则 高层次组件不应该依赖于低层次组件,二者均应该依赖于接口.抽象不应该依赖于细节,细节应该依赖于抽象. IOC:Inv ...
- noip模拟赛 立方数
题目描述LYK定义了一个数叫“立方数”,若一个数可以被写作是一个正整数的3次方,则这个数就是立方数,例如1,8,27就是最小的3个立方数.现在给定一个数P,LYK想要知道这个数是不是立方数.当然你有可 ...
- [bzoj1176]Mokia[CDQ分治]
啃了一天论文,发现CDQ分治的原理其实很简单,大概就是这样的一类分治:将左右区间按一定规律排序后分开处理,递归到底时直接计算答案,对于一个区间,按照第二关键字split成两个区间,先处理左区间,之后因 ...
- CF671C. Ultimate Weirdness of an Array
n<=200000个<=200000的数问所有的f(i,j)的和,表示去掉区间i到j后的剩余的数字中任选两个数的最大gcd. 数论日常不会.. 先试着计算一个数组:Hi表示f(l,r)&l ...
- 通过JQUERY获取SELECT OPTION中选中的值
遇到一样学一样. 一个是取KEY,一个是取VALUE,一个是取所有文本. var dbuser_select = $("#dbuser_select option:selected" ...
- Java获取系统环境变量(System Environment Variable)和系统属性(System Properties)以及启动参数的方法
系统环境变量(System Environment Variable): 在Linux下使用export $ENV=123指定的值.获取的方式如下: Map<String,String> ...
- Centos7 上安装mysql遇上的问题:mysql无法正常启动
第一次在Centos上安装mysql遇到的一些问题. 第一步就遇到问题,安装mysql-server报错没有可用包. [解决方法] 先要安装mysql # wget http://repo.mysq ...
- shell apt install 按tab键自动补全
insert if [ -f /etc/bash_completion ]; then . /etc/bash_completion fi to ~/.bashrc
- Windows 由于无法验证发布者,windows阻止控件安装怎么办
1 打开Internet选项 2 下载未签名的ACTIVEX控件-设为启动
- JavaSE学习笔记--Item1 注解Annotation
从 JDK 5.0 開始, Java 添加了对元数据(MetaData) 的支持, 也就是 Annotation(注解). 什么是Annotation,以及注解的作用? 三个主要的 Annotatio ...