[Luogu 2678] noip15 子串

题目描述

有两个仅包含小写英文字母的字符串 A 和 B。现在要从字符串 A 中取出 k 个互不重叠的非空子串,然后把这 k 个子串按照其在字符串 A 中出现的顺序依次连接起来得到一 个新的字符串,请问有多少种方案可以使得这个新串与字符串 B 相等?注意:子串取出 的位置不同也认为是不同的方案。

输入输出格式

输入格式:

输入文件名为 substring.in。

第一行是三个正整数 n,m,k,分别表示字符串 A 的长度,字符串 B 的长度,以及问

题描述中所提到的 k,每两个整数之间用一个空格隔开。 第二行包含一个长度为 n 的字符串,表示字符串 A。 第三行包含一个长度为 m 的字符串,表示字符串 B。

输出格式:

输出文件名为 substring.out。 输出共一行,包含一个整数,表示所求方案数。由于答案可能很大,所以这里要求[b]输出答案对 1,000,000,007 取模的结果。

输入输出样例

输入样例#1:

6 3 1
aabaab
aab
输出样例#1:

2
输入样例#2:

6 3 2
aabaab
aab
输出样例#2:

7
输入样例#3:

6 3 3
aabaab
aab
输出样例#3:

7

说明

对于第 1 组数据:1≤n≤500,1≤m≤50,k=1;

对于第 2 组至第 3 组数据:1≤n≤500,1≤m≤50,k=2; 对于第 4 组至第 5 组数据:1≤n≤500,1≤m≤50,k=m; 对于第 1 组至第 7 组数据:1≤n≤500,1≤m≤50,1≤k≤m; 对于第 1 组至第 9 组数据:1≤n≤1000,1≤m≤100,1≤k≤m; 对于所有 10 组数据:1≤n≤1000,1≤m≤200,1≤k≤m。

Solution:

想必在考场上还是需要多多思考,不然一道并不难的DP都不一定做的出

这道其实方程的想到其实并不难,

f[i][j][k][0..1]表示s到第i位,t到第j位,使用了k个子串,第i位是否取

那么这个算算好像空间有些爆炸,那么再想想滚动

因为在转移时候当前状态只跟i-1的状态有关,因此就可以对i进行滚动

***虽然我并不是这么打的,但是我觉得这个状态更简单想到

 #include<iostream>
#include<cstring>
#include<cmath>
#include<cstdio>
#include<algorithm>
using namespace std;
const int p=1e9+;
int n,m,K,ans=;
int f[][],g[][];
char s[],t[];
int main(){
scanf("%d%d%d",&n,&m,&K);
scanf("%s%s",s+,t+);
f[][]=g[][]=;
for (int i=;i<=n;++i)
for (int j=m;j>=;--j)
for (int k=;k<=K;++k){
if (s[i]!=t[j]) {f[j][k]=; continue;}
f[j][k]=(f[j-][k]+g[j-][k-])%p;
(g[j][k]+=f[j][k])%=p;
}
printf("%d",g[m][K]);
return ;
}

[Luogu 2678] noip15 子串的更多相关文章

  1. luogu P2408 不同子串个数

    考虑反向操作,去计算有多少组相同的子串,对于一组大小为k的极大相同子串的集合,ans-=k-1. 为了避免重复计算,需要一种有效的,有顺序的记录方案. 比如说,对于每一个相同组,按其起始点所在的位置排 ...

  2. Luogu P2408 不同子串个数【SAM】

    P2408 不同子串个数 计算一个字符串的不同子串个数 两种方法,一种是\(dp\)出来\(SAM\)从起点开始的路径数量 另一种方法就是计算每个点的\(len[i]-len[link[i]]\)这个 ...

  3. 【Luogu】P2679子串(DP)

    题目链接 GuessYCB的题解讲的很棒.就这样. 因为这题我不会,而题解又讲的太全太详细太好了. #include<cstdio> #include<cctype> #inc ...

  4. LUOGU P2408 不同子串个数(后缀数组)

    传送门 解题思路 后缀数组求本质不同串的裸题.\(ans=\dfrac{n(n+1)}{2} -\sum height[i]\). 代码 #include<iostream> #inclu ...

  5. luoguP4112 [HEOI2015]最短不公共子串 SAM,序列自动机,广搜BFS

    luoguP4112 [HEOI2015]最短不公共子串 链接 luogu loj 思路 子串可以用后缀自动机,子序列可以用序列自动机. 序列自动机是啥,就是能访问到所有子序列的自动机. 每个点记录下 ...

  6. Luogu 2679 子串 (动态规划)

    Luogu 2679 NOIP 2015 子串 (动态规划) Description 有两个仅包含小写英文字母的字符串 A 和 B.现在要从字符串 A 中取出 k 个互不重叠的非空子串,然后把这 k ...

  7. BZOJ 4032 Luogu P4112 [HEOI2015]最短不公共子串 (DP、后缀自动机)

    这其实是道水题... 题目链接: (bzoj)https://www.lydsy.com/JudgeOnline/problem.php?id=4032 (luogu)https://www.luog ...

  8. luogu 2463 [SDOI2008]Sandy的卡片 kmp || 后缀数组 n个串的最长公共子串

    题目链接 Description 给出\(n\)个序列.找出这\(n\)个序列的最长相同子串. 在这里,相同定义为:两个子串长度相同且一个串的全部元素加上一个数就会变成另一个串. 思路 参考:hzwe ...

  9. [LUOGU] P2679 子串

    一开始用一个f数组转移,发现不太对,状态有重叠部分 f[i][j][k]表示考虑了s的前i位,匹配到t的第j位,用了k个子串,且s的第i位必选 g[i][j][k]表示考虑了s的前i位,匹配到t的第j ...

随机推荐

  1. 使用Postman Interceptor发送带cookie的请求一直loading的解决法案

    很多web网页开发人员都知道Postman限制由于chrome安全的限制,发不出带cookie和带有自定义头部标签的请求.想要发出由于chrome安全的限制,发不出带cookie和带有自定义头部标签的 ...

  2. Java核心技术 卷一 复习笔记(乙

    1.字符串从概念上讲,Java字符串就是Unicode字符序列.Java没有内置的字符串类型,而是在标准Java类库中提供了一个预定义类,叫String. 每个用双引号括起来的字符串都是 String ...

  3. js获取昨天,最近7天,最近30天通用方法

    function formatDate (val) { // 格式化时间 let start = new Date(val) let y = start.getFullYear() let m = ( ...

  4. L2-014. 列车调度(带图详解)

    L2-014. 列车调度   火车站的列车调度铁轨的结构如下图所示. Figure 两端分别是一条入口(Entrance)轨道和一条出口(Exit)轨道,它们之间有N条平行的轨道.每趟列车从入口可以选 ...

  5. slf4j+log4j2的配置

    昨天自己测试了一下slf4j+log4j2的配置,可以正常使用,虽然配置十分简单,但好记性不如烂笔头,想想还是记录下来吧. 运行的环境:jdk1.7.tomcat7.Maven的web项目 1.在新建 ...

  6. HDU 4451 容斥原理

    题目大意: n件衣服,m条裤子,k双鞋子进行搭配 妈妈指明了哪些衣服和裤子不能搭配,哪些裤子和鞋子不能搭配,问最后有几种搭配方法 先假设都能搭配 n*m*k 每次遇到衣服和裤子不能搭的,就要减一次k, ...

  7. ZOJ 1654 Place the Robots

    题目大意: 在空地上放置尽可能多机器人,机器人朝上下左右4个方向发射子弹,子弹能穿过草地,但不能穿过墙, 两个机器人之间的子弹要保证互不干扰,求所能放置的机器人的最大个数 每个机器人所在的位置确定了, ...

  8. R - Milking Time DP

    Bessie is such a hard-working cow. In fact, she is so focused on maximizing her productivity that sh ...

  9. NOIP2011 提高组合集

    NOIP 2011 提高组合集 D1 T1 铺地毯 模拟,题目让你干啥你就干啥 #include <iostream> #include <cstdio> using name ...

  10. Android Studio Module 的添加与删除

    1. 添加Module(此时可以字面翻译为“模块”,意译为“其他工程”) 2. 删除Module 你要知道,Android Studio的非人性设计,导致删除一个module都是繁琐的. 当你想在An ...