Mathison and the Pokémon fights code

这是一道比较有意思,出的也非常好的题目。

给定$n$个平面上的点$(x_i, y_i)$,(允许离线地)维护$Q$个操作:
1.  0 $p$ $x$ $y$ 更改第$p$个点为$(x, y)$。
2.  1 $l$ $r$ $x$ $y$ 求第l个到第r个点与$(x, y)$之间的Chebyshev距离之和,即
$$ \sum_{i=l}^r \max\{|x_i-x|, |y_i-y|\}. $$

分析:

Chebyshev距离可以通过变换

$$(x, y) \mapsto (x+y, x-y)$$

转化为Manhattan距离,即 $(x_1, y_1)$与$(x_2, y_2)$的Chebyshev距离 等于 $(x_1+y_1, x_1-y_1)$与$(x_2+y_2, x_2-y_2)$的Manhattan距离的一半(因为变换的时候坐标放大了一倍)。

经过这个变换之后,x坐标和y坐标就相互独立了,因为两个点$(x_1, y_1)$与$(x_2, y_2)$的Manhattan距离为$|x_1-x_2|+|y_1-y_2|$。

于是转换成了一个更简单的题目:

给定一个长度为$n$的序列$a_i$,(允许离线地)维护$Q$个操作:
1. 0 $p$ $x$ 更改$a_p$为$x$。
2. 1 $l$ $r$ $x$ 求$\sum_{i=l}^r |x-x_i|$。

这题有很多种做法,官方题解的复杂度是$O(n \sqrt n \log n)$,不尽如人意。

我在比赛时成为了全场最快的解法,总时间18.65s,最大点1.16s,大概比速度第二快的(总时间大约30+s)快一倍。

解法是离线的cdq分治+树状数组。

把每个操作分成两个操作:
1. 0 $p$ $x$ 认为是 ①在平面上删除$(p, x_p)$,②在平面上插入$(p, x)$。
2. 1 $l$ $r$ $x$ 认为是 ①求$1\dots r$之和,②求$1\dots l$之和。

这样可以通过cdq维护二维偏序来解决这个问题。

时间复杂度$O((n+Q) \log^2(n+Q))$。

Hackerearth: Mathison and the Pokémon fights的更多相关文章

  1. 2017"百度之星"程序设计大赛 - 复赛1003&&HDU 6146 Pokémon GO【数学,递推,dp】

    Pokémon GO Time Limit: 3000/1500 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  2. Pokémon Go呼应设计:让全世界玩家疯狂沉迷

    引言:什么样的呼应设计会让移动游戏玩家沉迷?那必须为玩家构建一个属于玩家本人或者被玩家认可的虚拟环境,或者说是被玩家认可的虚拟世界.在移动游戏时代,想要做到这一点并不容易.但Pokémon Go却做到 ...

  3. 【HDU-6146】Pokémon GO(dp)

    百度之星2017复赛1003 HDU-6146 Pokémon GO 题意 两行n列,只能到相邻格子,可以斜着.求遍历的方案数. 题解 dp[i]从一个点出发遍历长度i最后回到这一列的方案数 dp2[ ...

  4. 【CF625E】Frog Fights(模拟)

    [CF625E]Frog Fights(模拟) 题面 CF 洛谷 翻译: 有\(n\)只青蛙在一个被分为了\(m\)等分的圆上,对于每份顺时针依次标号. 初始时每只青蛙所在的位置是\(p_i\),速度 ...

  5. Magisk+Xposed+Root switch+Pokémon GO

    If you follow Android Police, there's a good chance you've got a rooted device, whether it be an eas ...

  6. Codeforces Round #342 (Div. 2) E. Frog Fights set 模拟

    E. Frog Fights 题目连接: http://www.codeforces.com/contest/625/problem/E Description stap Bender recentl ...

  7. hdu 6146 Pokémon GO (计数)

    Problem Description 众所周知,度度熊最近沉迷于 Pokémon GO. 今天它决定要抓住所有的精灵球!为了不让度度熊失望,精灵球已经被事先放置在一个2*N的格子上,每一个格子上都有 ...

  8. C2. Pokémon Army (hard version) 解析(思維)

    Codeforce 1420 C2. Pokémon Army (hard version) 解析(思維) 今天我們來看看CF1420C2 題目連結 題目 略,請直接看原題. 前言 根本想不到這個等價 ...

  9. C1. Pokémon Army (easy version) 解析(DP)

    Codeforce 1420 C1. Pokémon Army (easy version) 解析(DP) 今天我們來看看CF1420C1 題目連結 題目 對於一個數列\(a\),選若干個數字,求al ...

随机推荐

  1. Cocoa开发中, 如何用全局变量

    比如在tabbar的开发中,可以某个页面的数据需要在back到此页面后依然有效. 可以用 appDelegate 这个对象来创建你的全局数据 这个内建的对象,在 APP 启动时产生,在 APP 退出时 ...

  2. BUPT复试专题—打牌(2011)

    https://www.nowcoder.com/practice/82442ee76977479e8ab4b88dfadfca9f?tpId=67&tqId=29640&tPage= ...

  3. vim列块操作

    一.可视模式 进入可视模式有三种方法:v,V,CTRL+V (1)按v启用可视模式,能够按单个字符选择内容,移动光标能够选择. 如: (2)按V启用可视模式,立马选中光标所在行.按单行符选择内容.移动 ...

  4. 【基础练习】【线性DP】codevs3027 线段覆盖2题解

    文章被盗还是非常严重,加版权信息 转载请注明出处 [ametake版权全部]http://blog.csdn.net/ametake欢迎来看看 这道题目是线性动归 可是思想和背包有些类似 事实上线性动 ...

  5. android项目笔记(一)

    1.getInstance:单例模式创建类的实例,getInstance在单例模式(保证一个类仅有一个实例,并提供一个访问它的全局访问点)的类中常见,用来生成唯一的实例,getInstance往往是s ...

  6. cocos2d-x 3.2 移植到android

    前人栽树,后人乘凉,这句话有点过了,只是想感谢一下为了移植cocos2d-x到android的"大婶"们所做出的贡献.          首先android环境需要配置好,需要的文 ...

  7. 【java】itoo项目实战之hibernate 批量保存优化

    在itoo中.基本上每一个系统都有一个导入功能,大量的数据填写进入excel模板中.然后使用导入功能导入的数据库中,这样能够大大的提高工作效率. 那么导入就涉及到了批量保存数据库的问题了. 那么通常情 ...

  8. 获取Wifi密码,不知道是不是真的

    package com.example.wifipassword; import java.util.List; import android.app.Activity; import android ...

  9. 程序编写安全代码——sendto和recvfrom的大坑

    近日帮一个兄弟查代码问题,再处理完一系列问题以后,发现程序某些时候工作还是不正常,甚至会崩溃.因为环境所限,不能使用gdb,所以我只能review他的代码.最终发现原来是sendto和recvfrom ...

  10. leetcode笔记:Pascal's Triangle

    一. 题目描写叙述 Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows ...