Hackerearth: Mathison and the Pokémon fights
Mathison and the Pokémon fights code
这是一道比较有意思,出的也非常好的题目。
给定$n$个平面上的点$(x_i, y_i)$,(允许离线地)维护$Q$个操作:
1. 0 $p$ $x$ $y$ 更改第$p$个点为$(x, y)$。
2. 1 $l$ $r$ $x$ $y$ 求第l个到第r个点与$(x, y)$之间的Chebyshev距离之和,即
$$ \sum_{i=l}^r \max\{|x_i-x|, |y_i-y|\}. $$
分析:
Chebyshev距离可以通过变换
$$(x, y) \mapsto (x+y, x-y)$$
转化为Manhattan距离,即 $(x_1, y_1)$与$(x_2, y_2)$的Chebyshev距离 等于 $(x_1+y_1, x_1-y_1)$与$(x_2+y_2, x_2-y_2)$的Manhattan距离的一半(因为变换的时候坐标放大了一倍)。
经过这个变换之后,x坐标和y坐标就相互独立了,因为两个点$(x_1, y_1)$与$(x_2, y_2)$的Manhattan距离为$|x_1-x_2|+|y_1-y_2|$。
于是转换成了一个更简单的题目:
给定一个长度为$n$的序列$a_i$,(允许离线地)维护$Q$个操作:
1. 0 $p$ $x$ 更改$a_p$为$x$。
2. 1 $l$ $r$ $x$ 求$\sum_{i=l}^r |x-x_i|$。
这题有很多种做法,官方题解的复杂度是$O(n \sqrt n \log n)$,不尽如人意。
我在比赛时成为了全场最快的解法,总时间18.65s,最大点1.16s,大概比速度第二快的(总时间大约30+s)快一倍。
解法是离线的cdq分治+树状数组。
把每个操作分成两个操作:
1. 0 $p$ $x$ 认为是 ①在平面上删除$(p, x_p)$,②在平面上插入$(p, x)$。
2. 1 $l$ $r$ $x$ 认为是 ①求$1\dots r$之和,②求$1\dots l$之和。
这样可以通过cdq维护二维偏序来解决这个问题。
时间复杂度$O((n+Q) \log^2(n+Q))$。
Hackerearth: Mathison and the Pokémon fights的更多相关文章
- 2017"百度之星"程序设计大赛 - 复赛1003&&HDU 6146 Pokémon GO【数学,递推,dp】
Pokémon GO Time Limit: 3000/1500 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- Pokémon Go呼应设计:让全世界玩家疯狂沉迷
引言:什么样的呼应设计会让移动游戏玩家沉迷?那必须为玩家构建一个属于玩家本人或者被玩家认可的虚拟环境,或者说是被玩家认可的虚拟世界.在移动游戏时代,想要做到这一点并不容易.但Pokémon Go却做到 ...
- 【HDU-6146】Pokémon GO(dp)
百度之星2017复赛1003 HDU-6146 Pokémon GO 题意 两行n列,只能到相邻格子,可以斜着.求遍历的方案数. 题解 dp[i]从一个点出发遍历长度i最后回到这一列的方案数 dp2[ ...
- 【CF625E】Frog Fights(模拟)
[CF625E]Frog Fights(模拟) 题面 CF 洛谷 翻译: 有\(n\)只青蛙在一个被分为了\(m\)等分的圆上,对于每份顺时针依次标号. 初始时每只青蛙所在的位置是\(p_i\),速度 ...
- Magisk+Xposed+Root switch+Pokémon GO
If you follow Android Police, there's a good chance you've got a rooted device, whether it be an eas ...
- Codeforces Round #342 (Div. 2) E. Frog Fights set 模拟
E. Frog Fights 题目连接: http://www.codeforces.com/contest/625/problem/E Description stap Bender recentl ...
- hdu 6146 Pokémon GO (计数)
Problem Description 众所周知,度度熊最近沉迷于 Pokémon GO. 今天它决定要抓住所有的精灵球!为了不让度度熊失望,精灵球已经被事先放置在一个2*N的格子上,每一个格子上都有 ...
- C2. Pokémon Army (hard version) 解析(思維)
Codeforce 1420 C2. Pokémon Army (hard version) 解析(思維) 今天我們來看看CF1420C2 題目連結 題目 略,請直接看原題. 前言 根本想不到這個等價 ...
- C1. Pokémon Army (easy version) 解析(DP)
Codeforce 1420 C1. Pokémon Army (easy version) 解析(DP) 今天我們來看看CF1420C1 題目連結 題目 對於一個數列\(a\),選若干個數字,求al ...
随机推荐
- Cocoa开发中, 如何用全局变量
比如在tabbar的开发中,可以某个页面的数据需要在back到此页面后依然有效. 可以用 appDelegate 这个对象来创建你的全局数据 这个内建的对象,在 APP 启动时产生,在 APP 退出时 ...
- BUPT复试专题—打牌(2011)
https://www.nowcoder.com/practice/82442ee76977479e8ab4b88dfadfca9f?tpId=67&tqId=29640&tPage= ...
- vim列块操作
一.可视模式 进入可视模式有三种方法:v,V,CTRL+V (1)按v启用可视模式,能够按单个字符选择内容,移动光标能够选择. 如: (2)按V启用可视模式,立马选中光标所在行.按单行符选择内容.移动 ...
- 【基础练习】【线性DP】codevs3027 线段覆盖2题解
文章被盗还是非常严重,加版权信息 转载请注明出处 [ametake版权全部]http://blog.csdn.net/ametake欢迎来看看 这道题目是线性动归 可是思想和背包有些类似 事实上线性动 ...
- android项目笔记(一)
1.getInstance:单例模式创建类的实例,getInstance在单例模式(保证一个类仅有一个实例,并提供一个访问它的全局访问点)的类中常见,用来生成唯一的实例,getInstance往往是s ...
- cocos2d-x 3.2 移植到android
前人栽树,后人乘凉,这句话有点过了,只是想感谢一下为了移植cocos2d-x到android的"大婶"们所做出的贡献. 首先android环境需要配置好,需要的文 ...
- 【java】itoo项目实战之hibernate 批量保存优化
在itoo中.基本上每一个系统都有一个导入功能,大量的数据填写进入excel模板中.然后使用导入功能导入的数据库中,这样能够大大的提高工作效率. 那么导入就涉及到了批量保存数据库的问题了. 那么通常情 ...
- 获取Wifi密码,不知道是不是真的
package com.example.wifipassword; import java.util.List; import android.app.Activity; import android ...
- 程序编写安全代码——sendto和recvfrom的大坑
近日帮一个兄弟查代码问题,再处理完一系列问题以后,发现程序某些时候工作还是不正常,甚至会崩溃.因为环境所限,不能使用gdb,所以我只能review他的代码.最终发现原来是sendto和recvfrom ...
- leetcode笔记:Pascal's Triangle
一. 题目描写叙述 Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows ...