题意:

  先给出一棵树,然后再给出m条边,把这m条边连上,然后剪掉两条边,一条是原边,一条是新边,问有多少种方案能使图不连通。

思路:

  从原边的角度看
    1.树加边,一定成环,加一条(u,v)边就有u->lca->v上的边被覆盖一次
    2.当一条边没被覆盖时,删去该边与任意一条新边都能使图不连通,即有m种方案
    3.当一条边被覆盖1次时,删去与该边成环的新边,即有1种方案
    4.当一条边被覆盖1次以上时,没有方案
  用树形dp,dp[i]表示第i号点与其父亲相连的边被覆盖的次数。一条新边(u,v)加入则++dp[u],++dp[v],dp[lca(u,v)]-=2,计算时从叶子结点向上累加,子节点的值加到父节点上,最后每个节点上的值就是覆盖次数。

反思:

  1.倍增求lca时不熟练。
  2.计算时根节点不计算。

代码:

 #include<cstdio>
const int M=;
#define swap(x,y) t=x,x=y,y=t
int t,cnt,ans,v[M<<],dp[M],dep[M],hea[M<<],nex[M<<],p[M][]; int read()
{
int x=; char ch=getchar();
while (ch< || ch>) ch=getchar();
while (ch> && ch<) x=(x<<)+(x<<)+ch-,ch=getchar();
return x;
} void add(int x,int y) { v[++cnt]=y,nex[cnt]=hea[x],hea[x]=cnt; } void dfs(int u,int x)
{
dep[u]=dep[p[u][]=x]+;
for (int i=hea[u];i;i=nex[i])
if (v[i]^x) dfs(v[i],u);
} int lca(int x,int y)
{
if (dep[x]<dep[y]) swap(x,y);
for (int i=;~i;--i)
if (dep[p[x][i]]>=dep[y]) x=p[x][i];
if (x==y) return x;
for (int i=;~i;--i)
if (p[x][i]^p[y][i]) x=p[x][i],y=p[y][i];
return p[x][];
} void DFS(int u,int x)
{
for (int i=hea[u],y;y=v[i],i;i=nex[i])
if (y^x) DFS(y,u),dp[u]+=dp[y];
} int main()
{
int n=read(),m=read(),x,y,i,j;
for (i=;i<n;++i) x=read(),y=read(),add(x,y),add(y,x);
dfs(,);
for (i=;i<;++i)
for (j=;j<=n;++j)
if (p[j][i-]) p[j][i]=p[p[j][i-]][i-];
for (i=;i<=m;++i) ++dp[x=read()],++dp[y=read()],dp[lca(x,y)]-=;
DFS(,);
for (i=;i<=n;++i)
if (!dp[i]) ans=ans+m;
else if (dp[i]==) ++ans;
printf("%d\n",ans);
return ;
}

poj 3417 Network 题解的更多相关文章

  1. poj 3417 Network(tarjan lca)

    poj 3417 Network(tarjan lca) 先给出一棵无根树,然后下面再给出m条边,把这m条边连上,然后每次你能毁掉两条边,规定一条是树边,一条是新边,问有多少种方案能使树断裂. 我们设 ...

  2. 【题解】POJ 3417 Network(倍增求LCA+DP+树上差分)

    POJ3417:http://poj.org/problem?id=3417 思路 我们注意到由“主要边”构成一颗树 “附加边”则是非树边 把一条附加边(x,y)加入树中 会与树上x,y之间构成一个环 ...

  3. POJ 3417 Network

    每条额外的边加入到图中,会导致树上一条路径成环,假设没有其余边,那么要将新图分成两部分,如果想删一条成环路径上的边,那么必须把这条额外边也删除. 因此每条额外边加入时,只需将环上的边+1.最后看看每条 ...

  4. poj 3417 Network (LCA,路径上有值)

    题意: N个点,构成一棵树.给出这棵树的结构. M条边,(a1,b1)...(am,bm),代表给树的这些点对连上边.这样就形成了有很多环的一个新"树". 现在要求你在原树中断一条 ...

  5. POJ 1236 Network of Schools(强连通 Tarjan+缩点)

    POJ 1236 Network of Schools(强连通 Tarjan+缩点) ACM 题目地址:POJ 1236 题意:  给定一张有向图,问最少选择几个点能遍历全图,以及最少加入�几条边使得 ...

  6. ZOJ 1542 POJ 1861 Network 网络 最小生成树,求最长边,Kruskal算法

    题目连接:problemId=542" target="_blank">ZOJ 1542 POJ 1861 Network 网络 Network Time Limi ...

  7. POJ 1236 Network of Schools(强连通分量)

    POJ 1236 Network of Schools 题目链接 题意:题意本质上就是,给定一个有向图,问两个问题 1.从哪几个顶点出发,能走全全部点 2.最少连几条边,使得图强连通 思路: #inc ...

  8. Poj 3694 Network (连通图缩点+LCA+并查集)

    题目链接: Poj 3694 Network 题目描述: 给出一个无向连通图,加入一系列边指定的后,问还剩下多少个桥? 解题思路: 先求出图的双连通分支,然后缩点重新建图,加入一个指定的边后,求出这条 ...

  9. Poj 1236 Network of Schools (Tarjan)

    题目链接: Poj 1236 Network of Schools 题目描述: 有n个学校,学校之间有一些单向的用来发射无线电的线路,当一个学校得到网络可以通过线路向其他学校传输网络,1:至少分配几个 ...

随机推荐

  1. 122 Best Time to Buy and Sell Stock II 买卖股票的最佳时机 II

    假设有一个数组,它的第 i 个元素是一个给定的股票在第 i 天的价格.设计一个算法来找到最大的利润.你可以完成尽可能多的交易(多次买卖股票).然而,你不能同时参与多个交易(你必须在再次购买前出售股票) ...

  2. Android Studio编译开源项目(含NDK开发)常见报错

    1.未设置NDK的路径 Error:Execution failed for task ':library:ndkBuild'. > A problem occurred starting pr ...

  3. [已读]基于MVC的Javascript Web 富应用开发

    这本书是12年出版,我买的时间应该是13年,书架上唯一一本盗版→ → 但是看完是在今年. 因为刚拿到的时候,读起来很是磕磕绊绊,就搁置了蛮久.到第二次拿起来的时候,发现已经有部分内容过时,但我还是觉得 ...

  4. android开发学习 ------- git - 将代码回滚到任意版本

    不小心将一个东西错误提交到git - 远程仓库上 参考  https://www.cnblogs.com/wancy86/p/5848024.html 你的git可能关联了多个远程仓库,每个关联的代码 ...

  5. AJPFX简述Java中this关键字的使用

    Java中this关键字的使用主要有两处: 1.构造方法 this指的是调用构造方法进行初始化的对象. //有参构造public Human(String name, int age) { this( ...

  6. html制作简单框架网页二 实现自己的影音驿站 操作步骤及源文件下载 (可播放mp4、avi、mpg、asx、swf各种文件的视频播放代码)

    新增视频播放功能如下图: 左侧网页left.html代码如下: <meta charset="utf-8"> <body style="backgrou ...

  7. 【转】windows server 2012 安装 VC14(VC2015) 安装失败解决方案

    系统环境如下:cmd命令行-输入 systeminfo 如下图 - The VC14 builds require to have the Visual C++ Redistributable for ...

  8. php同时查询两个表的数据

    业务环境,表一 会员等级表, 表二会员表, 有一个字段是相同的 会员等级ID level 在会员的显示页面要直接显示会员的会员等级名称,不是等级ID. 1.同时查询两个表 2.表设置别名, selec ...

  9. 合并百度影音的离线数据 with python 2.3 格式更新

    很久没有更新了. 这次新增支持四种格式的解析. filelist slicelist download.cfg third_party_download.cfg 还是2个文件.替换之前版本即可. 初步 ...

  10. 在proe模型文件里面存储用户数据

    存储外部数据 author:visualsan 2014.2 上海 1.简介 利用外部数据存储外部接口,可以在模型文件里面尺寸用户自定义数据.在模型保存时数据自动存储,在模型载入时数据自动载入.外部数 ...