Poj 3233 矩阵快速幂,暑假训练专题中的某一道题目,矩阵快速幂的模板
题目链接 请猛戳~
Description
Given a n × n matrix A and a positive integer k, find the sum S = A + A2 + A3 + … + Ak.
Input
The input contains exactly one test case. The first line of input contains three positive integers n (n ≤ 30), k (k ≤ 109) and m (m < 104). Then follow n lines each containing n nonnegative integers below 32,768, giving A’s elements in row-major order.
Output
Output the elements of S modulo m in the same way as A is given.
Sample Input
2 2 4
0 1
1 1
Sample Output
1 2
2 3
结题思路:
当k为偶数时,s(k)=(1+A^(k/2))*(A+A^2+…+A^(k/2)) 当k为奇数时,s(k)=A+(A+A^(k/2+1))*(A+A^2+…+A^(k/2))加以递归求解
#include <iostream>
#include <string.h>
#include <cstdio>
using namespace std;
const int MAX = 32;
struct Matrix{
int v[MAX][MAX];
};
Matrix E;//定义单位矩阵 E
int n,k,M;
Matrix add(Matrix a,Matrix b){//矩阵加法运算
Matrix c;
for(int i = 1;i <= n;i++)
for(int j = 1;j <= n;j++){
c.v[i][j] = (a.v[i][j] + b.v[i][j]) % M;
}
return c;
}
Matrix mul(Matrix a,Matrix b){//矩阵乘法运算
Matrix c;
for(int i = 1;i <= n;i++)
for(int j = 1;j <= n;j++){
c.v[i][j] = 0;
for(int k = 1;k <= n;k++)
c.v[i][j] = (a.v[i][k] * b.v[k][j] + c.v[i][j]) % M;
}
return c;
}
Matrix pow(Matrix a,int k){//矩阵幂运算
if(k == 0){
memset(a.v,0,sizeof(a.v));
for(int i = 1;i <= n;i++)
a.v[i][i] = 1;
return a;
}else if(k == 1) return a;
Matrix c = pow(a,k / 2);
if(k & 1){
return mul(a,mul(c,c));
}else
return mul(c,c);
}
Matrix sum(Matrix a,int k){ //连续升幂求和
if(k == 1)return a;
Matrix b = pow(a,(k + 1) / 2);
Matrix c = sum(a,k / 2);
if(k % 2){
return add(a,mul(add(a,b),c));
}else
return mul(add(E,b),c);
}
void initE(){ //初始化单位矩阵E
memset(E.v,0,sizeof(E.v));
for(int i = 1;i <= n;i++) E.v[i][i] = 1;
}
void print(Matrix a){
for(int i = 1;i <= n;i++){
for(int j = 1;j <= n;j++)
printf("%d ",a.v[i][j]);
puts("");
}
}
Matrix get(){
Matrix a;
for(int i = 1;i <= n;i++)
for(int j = 1;j <= n;j++)scanf(" %d",&a.v[i][j]);
return a;
}
int main()
{ while(~scanf("%d%d%d",&n,&k,&M)){
initE();
Matrix a = get();
Matrix b = sum(a,k);
print(b);
}
return 0;
}
Poj 3233 矩阵快速幂,暑假训练专题中的某一道题目,矩阵快速幂的模板的更多相关文章
- 矩阵儿快速幂 - POJ 3233 矩阵力量系列
不要管上面的标题的bug 那是幂的意思,不是力量... POJ 3233 Matrix Power Series 描述 Given a n × n matrix A and a positive in ...
- POJ 3233 Matrix Power Series (矩阵快速幂)
题目链接 Description Given a n × n matrix A and a positive integer k, find the sum S = A + A^2 + A^3 + - ...
- 题解报告:poj 3233 Matrix Power Series(矩阵快速幂)
题目链接:http://poj.org/problem?id=3233 Description Given a n × n matrix A and a positive integer k, fin ...
- Matrix Power Series POJ - 3233 矩阵幂次之和。
矩阵幂次之和. 自己想着想着就想到了一个解法,但是还没提交,因为POJ崩了,做了一个FIB的前n项和,也是用了这个方法,AC了,相信是可以得. 提交了,是AC的 http://poj.org/prob ...
- POJ 3233 Matrix Power Series——快速幂&&等比&&分治
题目 给定一个 $n \times n$ 的矩阵 $A$ 和正整数 $k$ 和 $m$.求矩阵 $A$ 的幂的和. $$S = A + A^2 + ... + A^k$$ 输出 $S$ 的各个元素对 ...
- POJ 3233 Matrix Power Series (矩阵乘法)
Matrix Power Series Time Limit: 3000MS Memory Limit: 131072K Total Submissions: 11954 Accepted: ...
- 矩阵十点【两】 poj 1575 Tr A poj 3233 Matrix Power Series
poj 1575 Tr A 主题链接:http://acm.hdu.edu.cn/showproblem.php?pid=1575 题目大意:A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的 ...
- POJ 3233 Matrix Power Series(矩阵高速功率+二分法)
职务地址:POJ 3233 题目大意:给定矩阵A,求A + A^2 + A^3 + - + A^k的结果(两个矩阵相加就是相应位置分别相加).输出的数据mod m. k<=10^9. 这 ...
- POJ - 3233 矩阵套矩阵
题意:给你矩阵\(A\),求\(S=\sum_{i=1}^{k}A^i\) 构造矩阵 \[ \begin{bmatrix} A & E \\ 0 & E\\ \end{bmatrix} ...
随机推荐
- 笔试算法题(34):从数字序列中寻找仅出现一次的数字 & 最大公约数(GCD)问题
出题:给定一个数字序列,其中每个数字最多出现两次,只有一个数字仅出现了一次,如何快速找出其中仅出现了一次的数字: 分析: 由于知道一个数字异或操作它本身(X^X=0)都为0,而任何数字异或操作0都为它 ...
- LBE_登录Demo
目录 服务器 最小资产库创建 entity配置 实体的Python实现 创建第一个空间Space 让entity进入空间Space 客户端(unity) 生成客户端SDK 实现Client部分验证 验 ...
- 如何优雅的使用vue+Dcloud(Hbuild)开发混合app
如何优雅的使用vue+Dcloud(Hbuild)开发混合app 最近在做混合app,前端框架用的是vue,打包app使用的是Dcloud,不过在开发过程中有一点不爽的是,如果想使用Dcloud提供的 ...
- jmeter 性能插件
mv jmeter-plugins-manager-0.16.jar /usr/local/Cellar/jmeter/3.1/libexec/lib/ext http://www.cnblogs.c ...
- python 开发搭建目录规范
软件目录结构规范有什么好处: 通过规范化,能够更好的控制软件结构,让程序具有更高的可读性. 项目目录组织结构如下: Foo/ # 项目名 --bin/ # 可执行文件目录 --foo # 可执行程序 ...
- Python之函数作业
Python之函数作业 爬页面 #爬虫页面,send一次爬一次 from urllib.request import urlopen def get(): while True: url = yiel ...
- Linux基础命令回顾
前言 说到linux基础命令,网上一搜一箩筐,想学也有很多教程,如果你不幸看到此篇文章,想看就认真看完,毕竟你点进来了不是嘛? 我每次写的文章都是为了分享自己的学习成果或重要知识点,希望能帮助更多的人 ...
- mysql 之 Workbench的使用
mysql 之 Workbench的使用 (1)简介 MySQL Workbench是一款专为MySQL设计的ER/数据库建模工具.它是著名的数据库设计工具DBDesigner4的继任者.你可以用My ...
- webstrom设置代码缩进四个空格
言,今天在github上拉了一份代码,发现代码缩进是2个空格,不习惯.找到了解决方案. 一.File ---> Settings 搜索Code Style,取消勾选使用现文件的缩进方式,见下图. ...
- JDBC的结果集
以下内容引用自http://wiki.jikexueyuan.com/project/jdbc/result-sets.html: SQL语句从数据库查询中获取数据,并将数据返回到结果集中.SELEC ...