先上题目:

  How Lader 

Lader is a game that is played in a regular hexagonal board (all sides equal, all angles are also equal). The game is much similar as pool game. But there is only one hole that is situated in the center of the hexagon. The position of the board is given by a 2D co-ordinate system. The top and bottom sides of the hexagon are parallel to x axis. The center of the hexagonal board is situated at (0,0).

You are trying to hit the ball B1 and the direction of hitting is from B1 to B2. After you have hit the ball B1, it starts reflecting on the walls of the hexagonal Lader board. The initial speed of the ball is given. When a ball hits a wall, its speed decreases by 1 unit/second. The ball stops when its' speed becomes  0unit/second.

You have to determine the final speed of the ball when it falls through the hole. If the ball stops before reaching the hole, print `Stops'. In this problem assume the followings:

  1. There is no loss of speed while rolling freely on the board.
  2. The radius of the ball is so small that you can consider it as a point.
  3. You may consider the ball fallen in the hole, if at any point the ball is situated at a distance closer than r + 10-6 units from the center of the hole, where r is the radius of the hole.
  4. The reflection happens according to the standard reflection rule (incident angle = reflection angle, with respect to the side of the hexagon) except for the case when it hits the corner. That case is described in 5-th rule.
  5. If a ball reaches at the corner (intersection point of two sides), its speed decreases by 2 (it is assumed that it hits both the walls) and it comes back along the line it hits that corner. If a ball with speed 1 hits the corner, it stops there.

The picture on the right above shows the movements of a ball on a Lader board. The numbers written denote the order of appearance.

Input

The first line of the input denotes T ( 1T150), the number of test cases to follow. Each test case consists of a 6 integers, s ( 0 < s < 150), x1, y1, x2, y2, rt (1t500). Here, s denotes the length of sides of the hexagon centered at (0,0).

(x1, y1) and (x2, y2) denote the position of ball B1 and ball B2 respectively. The balls will be strictly inside the hexagonal board. r denotes the radius of the hole, centered at (0,0). The hole resides strictly inside the hexagonal board. t denotes the initial speed of the ball.

Output

For each input, you have to print the case number first, followed by the terminal speed when it falls in the hole. If the ball stops before falling in the hole, print `Stops'.

Sample Input

4
80 10 0 20 0 5 200
51 7 4 0 9 5 1
55 -5 8 -6 7 8 104
12 1 0 0 -1 1 271

Sample Output

Case 1: 198
Case 2: Stops
Case 3: 99

Problemsetter: Anna Fariha 
Special Thanks: Md. Mahbubul Hasan

  题意:给你一个正六边形,中间有一个半径为R的洞,现在有一个球b1给他一个方向向量以及速度。球每一次碰撞六边形的边速度会减1,如果撞到角的话速度会减2,问你当球掉进洞里的时候速度是多少,如果还没有掉进洞里速度就小于等于0的话就输出"Stops"。

  几何+模拟。

  判断射线是否穿过点,射线与线段相交,射线与圆的交点,以及向量的反射。这要这些都解决的话就没有太多问题了。

  关于射线穿过点,射线与线段相交等,可以看一下该博客的一份几何模板。这里讲一下射线与圆的相交判断,射线与圆相交或者相切,可以用过解二元一次方程得到,根据判别式的值我们可以判断蛇蝎和圆的相交情况。这与向量的反射这里给出一条公式:v'=v+N*2*fabs(Dot(v,N)),其中这里v是入射向量v'是出射向量,N是反射面的法线向量,Dot(v,N)是点积。这里需要注意的是求点积以后需要求绝对值,因为这里求点积的作用是为了求向量在法线上的投影长度,所以需要转成正数。

  需要注意的地方是对于起点来说,如果一开始它就在原的里面或者边上的话,那它就一开始就可以输出结果了(特别注意的是在边上的情况)。

上代码:

 #include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define MAX 10
using namespace std; const double PI=*acos();
const double der60=PI/;
const double eps=1e-;
const double sqrt3=sqrt(); int dcmp(double x){
if(fabs(x)<eps) return ;
return x> ? : -;
} typedef struct Point{
double x,y;
Point(double x=,double y=):x(x),y(y){}
}Point;
typedef Point Vector;
Vector operator + (Point A,Point B){ return Vector(A.x+B.x,A.y+B.y);}
Vector operator - (Point A,Point B){ return Vector(A.x-B.x,A.y-B.y);}
Vector operator * (Point A,double e){ return Vector(A.x*e,A.y*e);}
Vector operator / (Point A,double e){ return Vector(A.x/e,A.y/e);}
bool operator == (Point A,Point B){ return dcmp(A.x-B.x)== && dcmp(A.y-B.y)==;}
double Dot(Vector A,Vector B){ return A.x*B.x+A.y*B.y;}
double Cross(Vector A,Vector B){ return A.x*B.y-A.y*B.x;}
double Length(Vector A){ return sqrt(Dot(A,A));} Vector Rotate(Vector A,double rad){
return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad));
}
Vector Normal(Vector A){
double L=Length(A);
if(dcmp(L)==) return Vector(,);
return Vector(-A.y/L,A.x/L);
}
Point p[],b1,b2,st;
Vector di;
double s;
int ti; typedef struct Circle{
Point c;
double r;
}Circle;
Circle cen; int getLCI(Point p0,Vector v,double &t1,double &t2){
double a=v.x; double b=p0.x-cen.c.x;
double c=v.y; double d=p0.y-cen.c.y;
double e=a*a+c*c; double f=*(a*b+c*d); double g=b*b+d*d-cen.r*cen.r;
double delta=f*f-*e*g;
if(dcmp(delta)<) return ;
if(dcmp(delta)==){
t1=t2=-f/(*e);
return ;
}
t1=(-f-sqrt(delta))/(*e);
t2=(-f+sqrt(delta))/(*e);
return ;
}
bool OnSegment(Point p0,Point a1,Point a2){
return (dcmp(Cross(a1-p0,a2-p0))== && dcmp(Dot(a1-p0,a2-p0))<);
} bool isPar(Point a1,Point a2){
Vector v=a2-a1;
v=v/Length(v);
if(v==di || (v*-)==di) return ;
return ;
} Point GLI(Point P,Vector v,Point Q,Vector w){
Vector u=P-Q;
double t=Cross(w,u)/Cross(v,w);
return P+v*t;
} bool isOnLine(Point e){
Vector u=e-st;
u=u/Length(u);
if(u==di) return ;
return ;
} int solve(){
int ans=ti;
double t1,t2;
Point tt;
Vector sv,ndi,normal;
bool f;
while(ans>){
if(getLCI(st,di,t1,t2)>){
if(t1>= || t2>=) return ans;
}
f=;
for(int i=;i<;i++){
if(isOnLine(p[i])){
st=p[i]; di=di*-;
ans-=; f=;
break;
}
}
if(f) continue;
for(int i=;i<;i++){
if(OnSegment(st,p[i],p[(i+)%])) continue;
if(isPar(p[i],p[(i+)%])) continue;
sv=p[(i+)%]-p[i];
tt=GLI(st,di,p[i],sv);
if(isOnLine(tt) && OnSegment(tt,p[i],p[(i+)%])){
st=tt;
normal=Normal(sv);
ndi=di+normal**fabs(Dot(di,normal));
di=ndi;
di=di/Length(di);
ans--;
break;
}
}
}
return ;
} int main()
{
int t,ans;
Vector e;
//freopen("data.txt","r",stdin);
scanf("%d",&t);
for(int z=;z<=t;z++){
scanf("%lf %lf %lf %lf %lf %lf %d",&s,&b1.x,&b1.y,&b2.x,&b2.y,&cen.r,&ti);
di=b2-b1;
di=di/Length(di);
st=b1;
cen.c.x=cen.c.y=;
p[].x=-s; p[].y=;
p[].x=-s/; p[].y=-s*sqrt3/;
p[].x=s/; p[].y=-s*sqrt3/;
p[].x=s; p[].y=;
p[].x=s/; p[].y=s*sqrt3/;
p[].x=-s/; p[].y=s*sqrt3/;
// for(int i=1;i<6;i++){
// p[i]=Rotate(p[i-1],der60);
// }
ans=solve();
printf("Case %d: ",z);
if(ans) printf("%d\n",ans);
else printf("Stops\n");
}
return ;
}

/*12617*/

UVa - 12617 - How Lader的更多相关文章

  1. uva 1354 Mobile Computing ——yhx

    aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABGcAAANuCAYAAAC7f2QuAAAgAElEQVR4nOy9XUhjWbo3vu72RRgkF5

  2. UVA 10564 Paths through the Hourglass[DP 打印]

    UVA - 10564 Paths through the Hourglass 题意: 要求从第一层走到最下面一层,只能往左下或右下走 问有多少条路径之和刚好等于S? 如果有的话,输出字典序最小的路径 ...

  3. UVA 11404 Palindromic Subsequence[DP LCS 打印]

    UVA - 11404 Palindromic Subsequence 题意:一个字符串,删去0个或多个字符,输出字典序最小且最长的回文字符串 不要求路径区间DP都可以做 然而要字典序最小 倒过来求L ...

  4. UVA&&POJ离散概率与数学期望入门练习[4]

    POJ3869 Headshot 题意:给出左轮手枪的子弹序列,打了一枪没子弹,要使下一枪也没子弹概率最大应该rotate还是shoot 条件概率,|00|/(|00|+|01|)和|0|/n谁大的问 ...

  5. UVA计数方法练习[3]

    UVA - 11538 Chess Queen 题意:n*m放置两个互相攻击的后的方案数 分开讨论行 列 两条对角线 一个求和式 可以化简后计算 // // main.cpp // uva11538 ...

  6. UVA数学入门训练Round1[6]

    UVA - 11388 GCD LCM 题意:输入g和l,找到a和b,gcd(a,b)=g,lacm(a,b)=l,a<b且a最小 g不能整除l时无解,否则一定g,l最小 #include &l ...

  7. UVA - 1625 Color Length[序列DP 代价计算技巧]

    UVA - 1625 Color Length   白书 很明显f[i][j]表示第一个取到i第二个取到j的代价 问题在于代价的计算,并不知道每种颜色的开始和结束   和模拟赛那道环形DP很想,计算这 ...

  8. UVA - 10375 Choose and divide[唯一分解定理]

    UVA - 10375 Choose and divide Choose and divide Time Limit: 1000MS   Memory Limit: 65536K Total Subm ...

  9. UVA - 11584 Partitioning by Palindromes[序列DP]

    UVA - 11584 Partitioning by Palindromes We say a sequence of char- acters is a palindrome if it is t ...

随机推荐

  1. 编写第一Spring程序

    构建Spring项目 通过https://start.spring.io/来构建项目,在这里我选择了两个依赖,web 和 Actuator. 项目结构 通过eclipse导入项目,可以看到这是一个标准 ...

  2. 乐搏讲自动化测试- Python自动化测试前景怎么样(4)

    Python言语还能够写爬虫,但仅仅只是爬虫的入门罢了.通过Python入门爬虫比较简略易学,不需要在一开始把握太多太根底太底层的常识就能够很快上手,而且很快能够做出成果,十分合适小白一开始想做出点看 ...

  3. redis实际项目作用

    我整理一下redis主要在项目作用,只是我接触到的 1  手机验证码存入redis中,可以限制什么时候有效 2 防止接口请求频率过高,例如一分钟只能请求5次 代码如下: <?php /** * ...

  4. [C++ STL] 迭代器(iterator)详解

    背景:指针可以用来遍历存储空间连续的数据结构,但是对于存储空间非连续的,就需要寻找一个行为类似指针的类,来对非数组的数据结构进行遍历.因此,我们引入迭代器概念.   一.迭代器(iterator)介绍 ...

  5. ACM_递推题目系列之一涂色问题(递推dp)

    递推题目系列之一涂色问题 Time Limit: 2000/1000ms (Java/Others) Problem Description: 有排成一行的n个方格,用红(Red).粉(Pink).绿 ...

  6. 实用and常用shell命令汇编

    很久没写blog了,基本都在用 github和笔记.现在将一些常用的shell并且很使用的shell用法分享一下: 分行读取,切割,计数: cat product.txt | while read l ...

  7. LN : leetcode 690 Employee Importance

    lc 690 Employee Importance 690 Employee Importance You are given a data structure of employee inform ...

  8. opencv 检测图片中圆形物体(解决乱线问题)

    2018-03-0418:03:12 整体代码如下: def detect_circle_demo (image): # 降噪处理 dst = cv.pyrMeanShiftFiltering(ima ...

  9. 【转载】testlink 1.8.5 安装错误的解决方法

    TestLink所需环境为PHP+MYSQL (支持MS SQL等),系统推荐使用PHP5.2,安装成功以后,如果运行时出错,主要两种错: [1].HP Warning: strtotime(): I ...

  10. Zynq7000系列之芯片引脚功能综述

    很多人做了很久的FPGA,知道怎么去给信号分配引脚,却对这些引脚的功能及其资源限制知之甚少:在第一章里对Zynq7000系列的系统框架进行了分析和论述,对Zynq7000系列的基本资源和概念有了大致的 ...