UVa - 12617 - How Lader
先上题目:
| How Lader |
Lader is a game that is played in a regular hexagonal board (all sides equal, all angles are also equal). The game is much similar as pool game. But there is only one hole that is situated in the center of the hexagon. The position of the board is given by a 2D co-ordinate system. The top and bottom sides of the hexagon are parallel to x axis. The center of the hexagonal board is situated at (0,0).


You are trying to hit the ball B1 and the direction of hitting is from B1 to B2. After you have hit the ball B1, it starts reflecting on the walls of the hexagonal Lader board. The initial speed of the ball is given. When a ball hits a wall, its speed decreases by 1 unit/second. The ball stops when its' speed becomes
0unit/second.
You have to determine the final speed of the ball when it falls through the hole. If the ball stops before reaching the hole, print `Stops'. In this problem assume the followings:
- There is no loss of speed while rolling freely on the board.
- The radius of the ball is so small that you can consider it as a point.
- You may consider the ball fallen in the hole, if at any point the ball is situated at a distance closer than r + 10-6 units from the center of the hole, where r is the radius of the hole.
- The reflection happens according to the standard reflection rule (incident angle = reflection angle, with respect to the side of the hexagon) except for the case when it hits the corner. That case is described in 5-th rule.
- If a ball reaches at the corner (intersection point of two sides), its speed decreases by 2 (it is assumed that it hits both the walls) and it comes back along the line it hits that corner. If a ball with speed 1 hits the corner, it stops there.
The picture on the right above shows the movements of a ball on a Lader board. The numbers written denote the order of appearance.
Input
The first line of the input denotes T ( 1
T
150), the number of test cases to follow. Each test case consists of a 6 integers, s ( 0 < s < 150), x1, y1, x2, y2, r, t (1
t
500). Here, s denotes the length of sides of the hexagon centered at (0,0).
(x1, y1) and (x2, y2) denote the position of ball B1 and ball B2 respectively. The balls will be strictly inside the hexagonal board. r denotes the radius of the hole, centered at (0,0). The hole resides strictly inside the hexagonal board. t denotes the initial speed of the ball.
Output
For each input, you have to print the case number first, followed by the terminal speed when it falls in the hole. If the ball stops before falling in the hole, print `Stops'.
Sample Input
4
80 10 0 20 0 5 200
51 7 4 0 9 5 1
55 -5 8 -6 7 8 104
12 1 0 0 -1 1 271
Sample Output
Case 1: 198
Case 2: Stops
Case 3: 99
Problemsetter: Anna Fariha
Special Thanks: Md. Mahbubul Hasan
题意:给你一个正六边形,中间有一个半径为R的洞,现在有一个球b1给他一个方向向量以及速度。球每一次碰撞六边形的边速度会减1,如果撞到角的话速度会减2,问你当球掉进洞里的时候速度是多少,如果还没有掉进洞里速度就小于等于0的话就输出"Stops"。
几何+模拟。
判断射线是否穿过点,射线与线段相交,射线与圆的交点,以及向量的反射。这要这些都解决的话就没有太多问题了。
关于射线穿过点,射线与线段相交等,可以看一下该博客的一份几何模板。这里讲一下射线与圆的相交判断,射线与圆相交或者相切,可以用过解二元一次方程得到,根据判别式的值我们可以判断蛇蝎和圆的相交情况。这与向量的反射这里给出一条公式:v'=v+N*2*fabs(Dot(v,N)),其中这里v是入射向量v'是出射向量,N是反射面的法线向量,Dot(v,N)是点积。这里需要注意的是求点积以后需要求绝对值,因为这里求点积的作用是为了求向量在法线上的投影长度,所以需要转成正数。
需要注意的地方是对于起点来说,如果一开始它就在原的里面或者边上的话,那它就一开始就可以输出结果了(特别注意的是在边上的情况)。
上代码:
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#define MAX 10
using namespace std; const double PI=*acos();
const double der60=PI/;
const double eps=1e-;
const double sqrt3=sqrt(); int dcmp(double x){
if(fabs(x)<eps) return ;
return x> ? : -;
} typedef struct Point{
double x,y;
Point(double x=,double y=):x(x),y(y){}
}Point;
typedef Point Vector;
Vector operator + (Point A,Point B){ return Vector(A.x+B.x,A.y+B.y);}
Vector operator - (Point A,Point B){ return Vector(A.x-B.x,A.y-B.y);}
Vector operator * (Point A,double e){ return Vector(A.x*e,A.y*e);}
Vector operator / (Point A,double e){ return Vector(A.x/e,A.y/e);}
bool operator == (Point A,Point B){ return dcmp(A.x-B.x)== && dcmp(A.y-B.y)==;}
double Dot(Vector A,Vector B){ return A.x*B.x+A.y*B.y;}
double Cross(Vector A,Vector B){ return A.x*B.y-A.y*B.x;}
double Length(Vector A){ return sqrt(Dot(A,A));} Vector Rotate(Vector A,double rad){
return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad));
}
Vector Normal(Vector A){
double L=Length(A);
if(dcmp(L)==) return Vector(,);
return Vector(-A.y/L,A.x/L);
}
Point p[],b1,b2,st;
Vector di;
double s;
int ti; typedef struct Circle{
Point c;
double r;
}Circle;
Circle cen; int getLCI(Point p0,Vector v,double &t1,double &t2){
double a=v.x; double b=p0.x-cen.c.x;
double c=v.y; double d=p0.y-cen.c.y;
double e=a*a+c*c; double f=*(a*b+c*d); double g=b*b+d*d-cen.r*cen.r;
double delta=f*f-*e*g;
if(dcmp(delta)<) return ;
if(dcmp(delta)==){
t1=t2=-f/(*e);
return ;
}
t1=(-f-sqrt(delta))/(*e);
t2=(-f+sqrt(delta))/(*e);
return ;
}
bool OnSegment(Point p0,Point a1,Point a2){
return (dcmp(Cross(a1-p0,a2-p0))== && dcmp(Dot(a1-p0,a2-p0))<);
} bool isPar(Point a1,Point a2){
Vector v=a2-a1;
v=v/Length(v);
if(v==di || (v*-)==di) return ;
return ;
} Point GLI(Point P,Vector v,Point Q,Vector w){
Vector u=P-Q;
double t=Cross(w,u)/Cross(v,w);
return P+v*t;
} bool isOnLine(Point e){
Vector u=e-st;
u=u/Length(u);
if(u==di) return ;
return ;
} int solve(){
int ans=ti;
double t1,t2;
Point tt;
Vector sv,ndi,normal;
bool f;
while(ans>){
if(getLCI(st,di,t1,t2)>){
if(t1>= || t2>=) return ans;
}
f=;
for(int i=;i<;i++){
if(isOnLine(p[i])){
st=p[i]; di=di*-;
ans-=; f=;
break;
}
}
if(f) continue;
for(int i=;i<;i++){
if(OnSegment(st,p[i],p[(i+)%])) continue;
if(isPar(p[i],p[(i+)%])) continue;
sv=p[(i+)%]-p[i];
tt=GLI(st,di,p[i],sv);
if(isOnLine(tt) && OnSegment(tt,p[i],p[(i+)%])){
st=tt;
normal=Normal(sv);
ndi=di+normal**fabs(Dot(di,normal));
di=ndi;
di=di/Length(di);
ans--;
break;
}
}
}
return ;
} int main()
{
int t,ans;
Vector e;
//freopen("data.txt","r",stdin);
scanf("%d",&t);
for(int z=;z<=t;z++){
scanf("%lf %lf %lf %lf %lf %lf %d",&s,&b1.x,&b1.y,&b2.x,&b2.y,&cen.r,&ti);
di=b2-b1;
di=di/Length(di);
st=b1;
cen.c.x=cen.c.y=;
p[].x=-s; p[].y=;
p[].x=-s/; p[].y=-s*sqrt3/;
p[].x=s/; p[].y=-s*sqrt3/;
p[].x=s; p[].y=;
p[].x=s/; p[].y=s*sqrt3/;
p[].x=-s/; p[].y=s*sqrt3/;
// for(int i=1;i<6;i++){
// p[i]=Rotate(p[i-1],der60);
// }
ans=solve();
printf("Case %d: ",z);
if(ans) printf("%d\n",ans);
else printf("Stops\n");
}
return ;
}
/*12617*/
UVa - 12617 - How Lader的更多相关文章
- uva 1354 Mobile Computing ——yhx
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAABGcAAANuCAYAAAC7f2QuAAAgAElEQVR4nOy9XUhjWbo3vu72RRgkF5
- UVA 10564 Paths through the Hourglass[DP 打印]
UVA - 10564 Paths through the Hourglass 题意: 要求从第一层走到最下面一层,只能往左下或右下走 问有多少条路径之和刚好等于S? 如果有的话,输出字典序最小的路径 ...
- UVA 11404 Palindromic Subsequence[DP LCS 打印]
UVA - 11404 Palindromic Subsequence 题意:一个字符串,删去0个或多个字符,输出字典序最小且最长的回文字符串 不要求路径区间DP都可以做 然而要字典序最小 倒过来求L ...
- UVA&&POJ离散概率与数学期望入门练习[4]
POJ3869 Headshot 题意:给出左轮手枪的子弹序列,打了一枪没子弹,要使下一枪也没子弹概率最大应该rotate还是shoot 条件概率,|00|/(|00|+|01|)和|0|/n谁大的问 ...
- UVA计数方法练习[3]
UVA - 11538 Chess Queen 题意:n*m放置两个互相攻击的后的方案数 分开讨论行 列 两条对角线 一个求和式 可以化简后计算 // // main.cpp // uva11538 ...
- UVA数学入门训练Round1[6]
UVA - 11388 GCD LCM 题意:输入g和l,找到a和b,gcd(a,b)=g,lacm(a,b)=l,a<b且a最小 g不能整除l时无解,否则一定g,l最小 #include &l ...
- UVA - 1625 Color Length[序列DP 代价计算技巧]
UVA - 1625 Color Length 白书 很明显f[i][j]表示第一个取到i第二个取到j的代价 问题在于代价的计算,并不知道每种颜色的开始和结束 和模拟赛那道环形DP很想,计算这 ...
- UVA - 10375 Choose and divide[唯一分解定理]
UVA - 10375 Choose and divide Choose and divide Time Limit: 1000MS Memory Limit: 65536K Total Subm ...
- UVA - 11584 Partitioning by Palindromes[序列DP]
UVA - 11584 Partitioning by Palindromes We say a sequence of char- acters is a palindrome if it is t ...
随机推荐
- bzoj 1629: [Usaco2007 Demo]Cow Acrobats【贪心+排序】
仿佛学到了贪心的新姿势-- 考虑相邻两头牛,交换它们对其他牛不产生影响,所以如果交换这两头牛能使这两头牛之间的最大值变小,则交换 #include<iostream> #include&l ...
- [Swift]圆周率π
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...
- RT-Thread 设备驱动-硬件定时器浅析与使用
RT-Thread 4.0.0 访问硬件定时器设备 应用程序通过 RT-Thread 提供的 I/O 设备管理接口来访问硬件定时器设备,相关接口如下所示: 函数 描述 rt_device_find() ...
- Proteus中的 PIC10/12/16 MCUs编译器无法下载的问题
当你打开网站时,点击该软件下载会发现如下页面: google一下会出现这个界面,大意是这个版本的编译器太老了,已经被某些更加高级的编译器给取代了(qaq心痛) 然后我就开始FQ到处google,Sou ...
- 状压DP UVA 10817 Headmaster's Headache
题目传送门 /* 题意:学校有在任的老师和应聘的老师,选择一些应聘老师,使得每门科目至少两个老师教,问最少花费多少 状压DP:一看到数据那么小,肯定是状压了.这个状态不好想,dp[s1][s2]表示s ...
- 清除WebSphere部署应用所对应的JSP缓存
Web应用部署在WebSphere Application Server v8.5后程序一般放置在<AppServer>/profiles/<profile_name>/ins ...
- EditText(8)EditText中drawableRight图片的点击事件
参考: http://stackoverflow.com/questions/3554377/handling-click-events-on-a-drawable-within-an-edittex ...
- java性能优化读书笔记(1)
1.采用clone()方式创建对象 java语言里面的所有类都默认继承自java.lang.Object,此类里有一个clone()方法: 拷贝对象返回的是一个新的对象,而不是一个对象的引用地址: 拷 ...
- jQuery学习笔记(5)-事件与事件对象
一.前言 主要讲解事件的绑定与触发 二.jQuery中添加事件 1.使用bind()方法绑定事件 <input id="btn" type="button" ...
- 微信JSSDK支付
var appId,timeStamp,nonceStr,package,signType,paySign; function goumai(){ $.confirm({ title: '确认购买', ...