洛谷——P2261 [CQOI2007]余数求和
P2261 [CQOI2007]余数求和
关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$
简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\times k)$
$=n*k-\sum_{i=1}^{n}\frac{k}{i}\times k$
$⌊ \frac{m}{k}⌋$ 共有 $O( √ m)$ 种取值,直接计算。总时间复杂度 $O( √ m)$
观察下图:
你会发现$\frac{k}{i}$是有规律的,或者说相同的紧挨着,分布在同一个块中
确定$\frac{k}{i}$取值相同的区间$[l,r]$,$r=min(n,k/(k/l))$
$k/l$代表这一部分的取值,$k/(k/l)$就是区间的右端点
确定了区间,那么根据等差数列求和公式$\frac{(S1+Sn)\times n}{2}$
#include<bits/stdc++.h> #define LL long long
using namespace std; LL n,k; int main()
{
scanf("%lld%lld",&n,&k);
LL ans=n*k;
for(LL l=,r;l<=n;l=r+){
if(k/l!=) r=min(k/(k/l),n);
else r=n;
ans-=(k/l)*(r-l+)*(l+r)/;
} printf("%lld\n",ans); return ;
}
洛谷——P2261 [CQOI2007]余数求和的更多相关文章
- 洛谷 P2261 [CQOI2007]余数求和 解题报告
P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...
- [洛谷P2261] [CQOI2007]余数求和
洛谷题目链接:[CQOI2007]余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n ...
- 洛谷P2261 [CQOI2007] 余数求和 [数论分块]
题目传送门 余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod ...
- 洛谷 P2261 [CQOI2007]余数求和
洛谷 一看就知道是一个数学题.嘿嘿- 讲讲各种分的做法吧. 30分做法:不知道,这大概是这题的难点吧! 60分做法: 一是直接暴力,看下代码吧- #include <bits/stdc++.h& ...
- 洛谷 P2261 [CQOI2007]余数求和 ||整除(数论)分块
参考:题解 令f(i)=k%i,[p]表示不大于p的最大整数f(i)=k%i=k-[k/i]*i令q=[k/i]f(i)=k-qi如果k/(i+1)=k/i=qf(i+1)=k-q(i+1)=k-qi ...
- 【洛谷P2261】余数求和
题目大意:给定 n, k,求\(\sum\limits_{i=1}^n k\%n\) 的值. 题解:除法分块思想的应用. \(x\%y=x-y\lfloor {x\over y}\rfloor\),因 ...
- 洛谷 2261 [CQOI2007]余数求和
题目戳这里 一句话题意 求 \(\sum_{i=1}^{n} (k ~~\texttt{mod} ~~i)\) Solution 30分做法: 说实话并不知道怎么办. 60分做法: 很明显直接一遍o( ...
- [Luogu P2261] [CQOI2007]余数求和 (取模计算)
题面 传送门:https://www.luogu.org/problemnew/show/P2261 Solution 这题显然有一个O(n)的直接计算法,60分到手. 接下来我们就可以拿出草稿纸推一 ...
- P2261 [CQOI2007]余数求和 【整除分块】
一.题面 P2261 [CQOI2007]余数求和 二.分析 参考文章:click here 对于整除分块,最重要的是弄清楚怎样求的分得的每个块的范围. 假设$ n = 10 ,k = 5 $ $$ ...
随机推荐
- 二分lower_bound()与upper_bound()的运用
<span style="color:#6633ff;">/* G - 二分 Time Limit:2000MS Memory Limit:32768KB 64bit ...
- POJ 2629:Common permutation
Common permutation Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 5510 Accepted: 168 ...
- nginx配置改变默认访问路径
在安装完nginx服务后,url访问的默认路径是安装的路径html文件夹下的内容,如果需要指定自定义的路径,需要配置nginx.conf文件内容,这样通过url访问就可以了,比如: http://12 ...
- JAVA的引用类型变量(C/C++中叫指针)
任何变量只要存在内存中,就需要有一个唯一的编号标识这个变量在内存中的位置,而这个唯一的内存编号就是内存地址,内存地址就是所谓的指针!
- codeforces 402E - Strictly Positive Matrix【tarjan】
首先认识一下01邻接矩阵k次幂的意义:经过k条边(x,y)之间的路径条数 所以可以把矩阵当成邻接矩阵,全是>0的话意味着两两之间都能相连,也就是整个都要在一个强连通分量里,所以直接tarjan染 ...
- [Swift通天遁地]一、超级工具-(7)创建一个图文并茂的笔记本程序
★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★★➤微信公众号:山青咏芝(shanqingyongzhi)➤博客园地址:山青咏芝(https://www.cnblogs. ...
- [C++ STL] list使用详解
一.list介绍: List由双向链表(doubly linked list)实现而成,元素也存放在堆中,每个元素都是放在一块内存中,他的内存空间可以是不连续的,通过指针来进行数据的访问,这个特点使得 ...
- 【洛谷3239_BZOJ4008】[HNOI2015] 亚瑟王(期望 DP)
题目: 洛谷 3239 分析: 卡牌造成的伤害是互相独立的,所以 \(ans=\sum f_i\cdot d_i\) ,其中 \(f_i\) 表示第 \(i\) 张牌 在整局游戏中 发动技能的概率.那 ...
- 18 C#中的循环执行 for循环
在这一节练习中,我们向大家介绍一下C#中的另一种重要的循环语句,for循环. for(表达式1;表达式2;表达式3) { 循环体 } 表达式1:一般为赋值表达式,给控制变量赋初值: 表达式2:逻辑表达 ...
- 联想 S5 Pro(L78041)免解锁BL 免rec 保留数据 ROOT Magisk Xposed 救砖 ZUI 5.0.123
>>>重点介绍<<< 第一:本刷机包可卡刷可线刷,刷机包比较大的原因是采用同时兼容卡刷和线刷的格式,所以比较大第二:[卡刷方法]卡刷不要解压刷机包,直接传入手机后用 ...