Description

Pine开始了从S地到T地的征途。
从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站。
Pine计划用m天到达T地。除第m天外,每一天晚上Pine都必须在休息站过夜。所以,一段路必须在同一天中走完。
Pine希望每一天走的路长度尽可能相近,所以他希望每一天走的路的长度的方差尽可能小。
帮助Pine求出最小方差是多少。
设方差是v,可以证明,v×m^2是一个整数。为了避免精度误差,输出结果时输出v×m^2。
 

Input

第一行两个数 n、m。
第二行 n 个数,表示 n 段路的长度
 

Output

一个数,最小方差乘以 m^2 后的值

 

Sample Input

5 2
1 2 5 8 6

Sample Output

36

HINT

1≤n≤3000,保证从 S 到 T 的总路程不超过 30000

/*
先吐槽一波数据,n=2146,只有2143个数的输入也是没谁了,害的我找了半天错误!
设m天走过的路程分别是a1,a2...am,平均数为p=dis[n]/m
化简一波式子 ans=Σ((ai-p)*(ai-p))*m*m=m*Σ(ai*ai)-dis[n]*dis[n]
f[i][j]表示第i天走到j地的最小 Σai*ai
首先求出动态转移方程 f[i][j]=min(f[i][k]+(dis[j]-dis[k])^2)
可以斜率优化,化简上式可得,若k1比k2更优,则有:
(dis[k1]^2-dis[k2]^2+f[i-1][k1]-f[i-1][k2])/(dis[k1]-dis[k2])>dis[j]*2
*/
#include<cstdio>
#include<iostream>
#include<cstring>
#define N 3010
#define lon long long
using namespace std;
lon dis[N],f[N][N];int n,m,q[N];
lon read(){
lon num=,flag=;char c=getchar();
while(c<''||c>''){if(c=='-')flag=-;c=getchar();}
while(c>=''&&c<=''){num=num*+c-'';c=getchar();}
return num*flag;
}
double lv(int i,int k1,int k2){
return double(dis[k1]*dis[k1]-dis[k2]*dis[k2]+f[i-][k1]-f[i-][k2])/double(dis[k1]-dis[k2]);
}
int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++){
int x=;scanf("%d",&x);
dis[i]=dis[i-]+(lon)x;
}
memset(f,/,sizeof(f));
int h,t;f[][]=;
for(int i=;i<=m;i++){
h=;t=;q[]=;
for(int j=;j<=n;j++){
while(h<t&&lv(i,q[h+],q[h])<=dis[j]*)
h++;
f[i][j]=f[i-][q[h]]+(dis[j]-dis[q[h]])*(dis[j]-dis[q[h]]);
while(h<t&&lv(i,j,q[t])<=lv(i,q[t],q[t-])) t--;
q[++t]=j;
}
}
cout<<f[m][n]*m-dis[n]*dis[n];
return ;
}

征途(bzoj 4518)的更多相关文章

  1. 征途 bzoj 4518

    征途(1s 256MB)journey [问题描述] Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除第m天外,每一天 ...

  2. 动态规划(决策单调优化):BZOJ 4518 [Sdoi2016]征途

    4518: [Sdoi2016]征途 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 532  Solved: 337[Submit][Status][ ...

  3. BZOJ 4518: [Sdoi2016]征途 [斜率优化DP]

    4518: [Sdoi2016]征途 题意:\(n\le 3000\)个数分成m组,一组的和为一个数,求最小方差\(*m^2\) DP方程随便写\(f[i][j]=min\{f[k][j-1]+(s[ ...

  4. BZOJ 4518 [Sdoi2016]征途(分治DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4518 [题目大意] 给出一个数列,分成m段,求方差最小,答案乘上m的平方. [题解] ...

  5. ●BZOJ 4518 [Sdoi2016]征途

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4518 题解: 斜率优化DP 首先看看最后答案的形式: 设a[i]为第i天走的距离,那么 $A ...

  6. bzoj 4518: [Sdoi2016]征途

    Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除第m天外,每一天晚上Pine都必须在休息站过夜 ...

  7. 【题解】征途 SDOI 2016 BZOJ 4518

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4518 首先推式子,我们用$x_i$表示第$i$段的路程,$sum$表示总路程,根据方差和平均 ...

  8. BZOJ 4518 征途

    斜率优化.又是变量名打错看了老半天. 把方差式子展开一下就好了. #include<iostream> #include<cstdio> #include<cstring ...

  9. 【BZOJ 4518】【SDOI 2016 Round1 Day2 T3】征途

    比较明显的斜率优化DP,省选时因为时间太紧张和斜率DP写得不熟等原因只写了60分的暴力DP,其实当时完全可以对拍来检验标算的正确,但是我当时too naive- 很快打完了,调了将近一晚上QAQ,因为 ...

随机推荐

  1. SAP成都研究院郑晓霞:Shift Left Testing和软件质量保证的一些思考

    今天的文章来自Jerry的同事,曾经的搭档郑晓霞(Zheng Kate).郑晓霞是在Jerry心中是一位很有实力的程序媛,2011年从西安某软件公司跳槽到SAP成都研究院.当时,成都研究院的CRM团队 ...

  2. 关键字: on

    关键字: on 数据库在通过连接两张或多张表来返回记录时,都会生成一张中间的临时表,然后再将这张临时表返回给用户. 在使用left jion时,on和where条件的区别如下: 1. on条件是在生成 ...

  3. 转向ARC的说明

    转自hherima的博客原文:Transitioning to ARC Release Notes(苹果官方文档) ARC是一个编译器特征,它提供了对OC对象自动管理内存.ARC让开发者专注于感兴趣的 ...

  4. 将回车键转换为Tab键

    实现效果: 知识运用: KeyEventArgs类的KeyValue属性 public int KeyValue {get;} //获取KeyDown或KeyUp事件的键盘值 SendKeys类的Se ...

  5. roi_pooling层

    roi_pooling层先把rpn生成的roi映射到特征提取层最后一层,然后再分成7*7个bin进行池化 下面是roi_pooling层的映射到特征提取层的代码,可以看到用的是round函数,也就是说 ...

  6. python之数据类型补充

    1. capitalize (首字母大写) 例题: s = "alex wusir" s1 = s.capitalize() # 格式 print(s1) ''' 输出结果 Ale ...

  7. tomcat假死现象(转)

    1.1 编写目的 为了方便大家以后发现进程假死的时候能够正常的分析并且第一时间保留现场快照. 1.2编写背景 最近服务器发现tomcat的应用会偶尔出现无法访问的情况.经过一段时间的观察最近又发现有台 ...

  8. gdb插件使用方法

    0x00 peda peda 安装: git clone https://github.com/longld/peda.git ~/peda echo "source ~/peda/peda ...

  9. thinkphp 结合phpexcel实现excel导入

    控制器文件: class ExcelAction extends Action { public function __construct() { import('ORG.Util.ExcelToAr ...

  10. Bootstrap 响应式表格

    响应式表格 通过把任意的 .table 包在 .table-responsive class 内,您可以让表格水平滚动以适应小型设备(小于 768px).当在大于 768px 宽的大型设备上查看时,您 ...