【Luogu】P2522Problemb(莫比乌斯反演)
同Zip—Queries,但是用到容斥原理
设f(n,m)是(x,y)的对数,其中1<=x<=n,1<=y<=m
则有f(n,m)-f(a-1,n)-f(b-1,m)+f(a-1,b-1)就是(x,y)的对数,其中a<=x<=n,b<=y<=m
然后就不多说啦
放代码
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cctype> using namespace std; inline long long read(){
long long num=,f=;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') f=-;
ch=getchar();
}
while(isdigit(ch)){
num=num*+ch-'';
ch=getchar();
}
return num*f;
} long long miu[];
long long prime[],tot;
bool f[]; inline long long calc(long long n,long long m){
long long x=,top=min(n,m),ans=;
while(x<=top){
long long y=min(n/(n/x),m/(m/x));
ans+=(miu[y]-miu[x-])*(n/x)*(m/x);
x=y+;
}
return ans;
} int main(){
miu[]=;
for(int i=;i<=;++i){
if(!f[i]){
prime[++tot]=i;
miu[i]=-;
}
for(int j=;j<=tot&&(long long)i*prime[j]<=;++j){
f[(long long)i*prime[j]]=;
if(i%prime[j]) miu[(long long)i*prime[j]]=-miu[i];
else break;
}
}
for(int i=;i<=;++i) miu[i]+=miu[i-];
int T=read();
while(T--){
long long a=read(),b=read(),c=read(),d=read(),e=read();
printf("%lld\n",calc(b/e,d/e)-calc((a-)/e,d/e)-calc((c-)/e,b/e)+calc((a-)/e,(c-)/e));
}
return ;
}
【Luogu】P2522Problemb(莫比乌斯反演)的更多相关文章
- BZOJ 3930 Luogu P3172 选数 (莫比乌斯反演)
手动博客搬家:本文发表于20180310 11:46:11, 原地址https://blog.csdn.net/suncongbo/article/details/79506484 题目链接: (Lu ...
- BZOJ 1101 Luogu P3455 POI 2007 Zap (莫比乌斯反演+数论分块)
手动博客搬家: 本文发表于20171216 13:34:20, 原地址https://blog.csdn.net/suncongbo/article/details/78819470 URL: (Lu ...
- [jzoj 6084] [GDOI2019模拟2019.3.25] 礼物 [luogu 4916] 魔力环 解题报告(莫比乌斯反演+生成函数)
题目链接: https://jzoj.net/senior/#main/show/6084 https://www.luogu.org/problemnew/show/P4916 题目: 题解: 注: ...
- [luogu P2586] GCD 解题报告 (莫比乌斯反演|欧拉函数)
题目链接:https://www.luogu.org/problemnew/show/P2568#sub 题目大意: 计算$\sum_{x=1}^n\sum_{y=1}^n [gcd(x,y)==p ...
- BZOJ 5330 Luogu P4607 [SDOI2018]反回文串 (莫比乌斯反演、Pollard Rho算法)
题目链接 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.php?id=5330 (Luogu) https://www.luogu.org/prob ...
- [Luogu P1829] [国家集训队]Crash的数字表格 / JZPTAB (莫比乌斯反演)
题面 传送门:洛咕 Solution 调到自闭,我好菜啊 为了方便讨论,以下式子\(m>=n\) 为了方便书写,以下式子中的除号均为向下取整 我们来颓柿子吧qwq 显然,题目让我们求: \(\l ...
- [Luogu P3455] [POI2007]ZAP-Queries (莫比乌斯反演 )
题面 传送门:洛咕 Solution 这题比这题不懂简单到哪里去了 好吧,我们来颓柿子. 为了防止重名,以下所有柿子中的\(x\)既是题目中的\(d\) 为了方便讨论,以下柿子均假设\(b>=a ...
- Luogu P2257 YY的GCD 莫比乌斯反演
第一道莫比乌斯反演...$qwq$ 设$f(d)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d]$ $F(n)=\sum_{n|d}f(d)=\lfloor \frac{N ...
- 【Luogu】P2303Longge的问题(莫比乌斯反演)
就让我这样的蒟蒻发一个简单易想的题解吧!!! 这题我一开始一看,woc这不是莫比乌斯反演么,推推推,推到杜教筛,输出结果一看不对 emmm回来仔细想想……woc推错了? 然后撕烤半天打了个暴力,A了 ...
- 【Luogu】P3327约数个数和(莫比乌斯反演+神奇数论公式)
题目链接 真TM是神奇数论公式. 注明:如无特殊说明我们的除法都是整数除法,向下取整的那种. 首先有个定理叫$d(ij)=\sum\limits_{i|n}{}\sum\limits_{j|m}{}( ...
随机推荐
- Easyui combobox如何默认选中第一项???
以下代码可以实现combobox默认选中第一项,在实际开发中我们可能会用到! // 处理combobox默认选中的问题 <input id="user_type" class ...
- Python 学习日志9月20日
9月20日 周三 多大年龄了,还活得像个小孩.——急什么,人生又不长. 你习惯了思考宇宙星辰,一百年真的不长,一生也就不那么长,许多人的价值观念你也就无法理解.同样,许多人也无法理解你的价值观念,感兴 ...
- 关于HTML5中Video标签无法播放mp4的解决办法
1.首先先排除掉代码问题.路径问题.浏览器不支持问题等常规问题,这些问题另行百度. <video width="500px" height="300px" ...
- 用vscode开发vue应用[转]
https://segmentfault.com/a/1190000019055976 现在用VSCode开发Vue.js应用几乎已经是前端的标配了,但很多时候我们看到的代码混乱不堪,作为一个前端工程 ...
- noj-1102-黑白图像
1 //题目地址:http://acm.njupt.edu.cn/acmhome/problemdetail.do?method=showdetail&id=1102 ...
- JavaScript -- 语法和数据类型
前戏 前面学了HTML和CSS相关的知识,那JavaScript是做什么的呢?你在网页上看到的那些炫酷的特效都是通过JS来实现的,所以,想要开发一个逼格满满的web页面,JS是必须要会的 什么是Jav ...
- jquery操作滚动条滚动到指定元素位置 scrollTop
$('.brand_t a').bind('click',function(){ if($(this).attr('title1')){ var toChar = $(this).attr('titl ...
- tp5对接支付宝支付简单集成
对于每个刚开始工作的新手来说,无论支付宝支付还是微信支付都是跑不掉的一个小门槛. 在加上本人比较技术比较渣(比较懒导致的),不太喜欢引用那么大的SDK,于是就简单集成了一下支付宝的支付. 但也只是只有 ...
- vue建项目并使用
今天来回顾下vue项目的建立和使用,好久不用感觉不会用了. 下面两个都要全局安装 首先安装git,地址 https://gitforwindows.org/ 安装node, 地址 https://n ...
- json 将key值以字符串形式取出
int GetJsonCString(const Json::Value& value, char* str, int n){ if (!value.empty() && va ...