题目链接

  同Zip—Queries,但是用到容斥原理

  设f(n,m)是(x,y)的对数,其中1<=x<=n,1<=y<=m

  则有f(n,m)-f(a-1,n)-f(b-1,m)+f(a-1,b-1)就是(x,y)的对数,其中a<=x<=n,b<=y<=m

  然后就不多说啦

  放代码

  

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<cctype> using namespace std; inline long long read(){
long long num=,f=;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') f=-;
ch=getchar();
}
while(isdigit(ch)){
num=num*+ch-'';
ch=getchar();
}
return num*f;
} long long miu[];
long long prime[],tot;
bool f[]; inline long long calc(long long n,long long m){
long long x=,top=min(n,m),ans=;
while(x<=top){
long long y=min(n/(n/x),m/(m/x));
ans+=(miu[y]-miu[x-])*(n/x)*(m/x);
x=y+;
}
return ans;
} int main(){
miu[]=;
for(int i=;i<=;++i){
if(!f[i]){
prime[++tot]=i;
miu[i]=-;
}
for(int j=;j<=tot&&(long long)i*prime[j]<=;++j){
f[(long long)i*prime[j]]=;
if(i%prime[j]) miu[(long long)i*prime[j]]=-miu[i];
else break;
}
}
for(int i=;i<=;++i) miu[i]+=miu[i-];
int T=read();
while(T--){
long long a=read(),b=read(),c=read(),d=read(),e=read();
printf("%lld\n",calc(b/e,d/e)-calc((a-)/e,d/e)-calc((c-)/e,b/e)+calc((a-)/e,(c-)/e));
}
return ;
}

【Luogu】P2522Problemb(莫比乌斯反演)的更多相关文章

  1. BZOJ 3930 Luogu P3172 选数 (莫比乌斯反演)

    手动博客搬家:本文发表于20180310 11:46:11, 原地址https://blog.csdn.net/suncongbo/article/details/79506484 题目链接: (Lu ...

  2. BZOJ 1101 Luogu P3455 POI 2007 Zap (莫比乌斯反演+数论分块)

    手动博客搬家: 本文发表于20171216 13:34:20, 原地址https://blog.csdn.net/suncongbo/article/details/78819470 URL: (Lu ...

  3. [jzoj 6084] [GDOI2019模拟2019.3.25] 礼物 [luogu 4916] 魔力环 解题报告(莫比乌斯反演+生成函数)

    题目链接: https://jzoj.net/senior/#main/show/6084 https://www.luogu.org/problemnew/show/P4916 题目: 题解: 注: ...

  4. [luogu P2586] GCD 解题报告 (莫比乌斯反演|欧拉函数)

    题目链接:https://www.luogu.org/problemnew/show/P2568#sub 题目大意: 计算​$\sum_{x=1}^n\sum_{y=1}^n [gcd(x,y)==p ...

  5. BZOJ 5330 Luogu P4607 [SDOI2018]反回文串 (莫比乌斯反演、Pollard Rho算法)

    题目链接 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.php?id=5330 (Luogu) https://www.luogu.org/prob ...

  6. [Luogu P1829] [国家集训队]Crash的数字表格 / JZPTAB (莫比乌斯反演)

    题面 传送门:洛咕 Solution 调到自闭,我好菜啊 为了方便讨论,以下式子\(m>=n\) 为了方便书写,以下式子中的除号均为向下取整 我们来颓柿子吧qwq 显然,题目让我们求: \(\l ...

  7. [Luogu P3455] [POI2007]ZAP-Queries (莫比乌斯反演 )

    题面 传送门:洛咕 Solution 这题比这题不懂简单到哪里去了 好吧,我们来颓柿子. 为了防止重名,以下所有柿子中的\(x\)既是题目中的\(d\) 为了方便讨论,以下柿子均假设\(b>=a ...

  8. Luogu P2257 YY的GCD 莫比乌斯反演

    第一道莫比乌斯反演...$qwq$ 设$f(d)=\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)==d]$ $F(n)=\sum_{n|d}f(d)=\lfloor \frac{N ...

  9. 【Luogu】P2303Longge的问题(莫比乌斯反演)

    就让我这样的蒟蒻发一个简单易想的题解吧!!! 这题我一开始一看,woc这不是莫比乌斯反演么,推推推,推到杜教筛,输出结果一看不对 emmm回来仔细想想……woc推错了? 然后撕烤半天打了个暴力,A了 ...

  10. 【Luogu】P3327约数个数和(莫比乌斯反演+神奇数论公式)

    题目链接 真TM是神奇数论公式. 注明:如无特殊说明我们的除法都是整数除法,向下取整的那种. 首先有个定理叫$d(ij)=\sum\limits_{i|n}{}\sum\limits_{j|m}{}( ...

随机推荐

  1. Lucene-安装和运行Demo程序

    Lucene是什么 Lucene是一款高性能.可扩展的信息检索工具库.- Lucene In Action Lucene版本:7.1 一.下载安装包 https://lucene.apache.org ...

  2. c++的const和static区别

    const定义的常量在超出其作用域之后其空间会被释放,而static定义的静态常量在函数执行后不会释放其存储空间. static表示的是静态的.类的静态成员函数.静态成员变量是和类相关的,而不是和类的 ...

  3. caffe的调试技巧 和 使用split层

    1.网络中的layer层的输出,只要没有作为其他层的输入,caffe的日志就会把这个top输出(如果你用那个网站画网络结构图,你也会发现这种情况的层的颜色是不一样的,是紫色的) 2.如果你想看某一层在 ...

  4. Web中打印的各种方案参考

    http://blog.csdn.net/chinahuyong/article/details/42527491

  5. VUE2中axios的使用方法

    一,安装 npm install axios 二,在http.js中引入 import axios from 'axios'; 三,定义http request 拦截器,添加数据请求公用信息 axio ...

  6. static静态变量的用法

    一,static全局变量 当一个进程的全局变量被声明为static之后,它的中文名叫静态全局变量.静态全局变量和其他的全局变量的存储地点并没有区别,都是在.data段(已初始化)或者.bss段(未初始 ...

  7. python中with用法及原理

    资源的管理在程序的设计上是一个很常见的问题,例如管理档案,开启的网络socket与各种锁定(locks)等.最主要的问题在于我们必须确保这些开启的资源在使用之后能够关闭(或释放),若忘记关闭这些资源, ...

  8. Linux-实现双主模型的nginx的高可用

    实现双主模型的ngnix高可用(一) 准备:主机7台 client: 172.18.x.x 调度器:keepalived+nginx 带172.18.x.x/16 网卡 192.168.234.27 ...

  9. axure笔记--内置变量

    部件变量: This:当前变量名称 Target:目标变量的名称 x,y表示组件左上角的位置 name:获取当前组件标签命名 Top:获取组件上边界到x轴的距离 bottom:获取组件下边界到x轴的距 ...

  10. 【linux】【网络安全】linux中怎样关闭ICMP回应功能

    引用自:http://blog.csdn.net/qq844352155/article/details/49700121       linux中怎样关闭ICMP回应功能   输入:   echo ...