#include<stdio.h>
#include "fatal.h" struct AvlNode;
typedef struct AvlNode *Position;
typedef struct AvlNode *AvlTree; typedef int ElementType ; AvlTree MakeEmpty(AvlTree T);
Position Find(ElementType X,AvlTree T);
Position FindMin(AvlTree T);
Position FindMax(AvlTree T);
AvlTree Insert(ElementType X,AvlTree T);
AvlTree Delete(ElementType X,AvlTree T);
ElementType Retrieve(Position P); struct AvlNode
{
ElementType Element;
AvlTree left;
AvlTree right;
int height;
}; AvlTree MakeEmpty(AvlTree T)
{
if(T!=NULL)
{
MakeEmpty(T->left);
MakeEmpty(T->right);
free(T);
}
return NULL;
} Position Find(ElementType X,AvlTree T)
{
if(T==NULL)
return NULL;
if(X<T->Element)
return Find(X,T->left);
else if(X>T->Element)
return Find(X,T->right);
else
return T;
} Position FindMin(AvlTree T)
{
if(T==NULL)
return NULL;
if(T->left==NULL)
return T;
else
return FindMin(T->left);
} Position FindMax(AvlTree T)
{
if(T==NULL)
return NULL;
if(T->right==NULL)
return T;
else
return FindMax(T->right);
} static int Height(Position P)
{
if(P==NULL)
return -;
else
return P->height;
} static int Max(int Lhs,int Rhs)
{
return Lhs>Rhs?Lhs:Rhs;
}
//RR旋转
static Position SingleRotateWithLeft(Position K2)
{
Position K1;
K1=K2->left;
K2->left=K1->right;
K1->right=K2;
K2->height=Max(Height(K2->left),Height(K2->right))+;
K1->height=Max(Height(K1->left),Height(K2->right))+;
return K1;
}
//LL旋转
static Position SingleRotateWithRight(Position K1)
{
Position K2;
K2=K1->right;
K1->right=K2->left;
K2->left=K1;
K1->height=Max(Height(K1->left),Height(K1->right))+;
K2->height=Max(Height(K2->right),Height(K1->left))+;
return K2;
}
//LR旋转
static Position DoubleRotateWithLeft(Position K3)
{
K3->left=SingleRotateWithRight(K3->left); return SingleRotateWithLeft(K3);
} //RL旋转
static Position DoubleRotateWithRight(Position K3)
{
K3->right=SingleRotateWithLeft(K3->right);
return SingleRotateWithRight(K3);
} AvlTree Insert(ElementType X,AvlTree T)
{
if(T==NULL)
{
T=malloc(sizeof(struct AvlNode));
if(T==NULL)
FatalError("out of space!!!");
else
{
T->Element=X;
T->right=T->left=NULL;
}
}
else if(X<T->Element)
{
T->left=Insert(X,T->left);
if(Height(T->left)-Height(T->right)==)
{
if(X<T->left->Element)
T=SingleRotateWithLeft(T);
else
T=DoubleRotateWithLeft(T);
}
}
else if(X>T->Element)
{
T->right=Insert(X,T->right);
if(Height(T->right)-Height(T->left)==)
{
if(X>T->right->Element)
T=SingleRotateWithRight(T);
else
T=DoubleRotateWithRight(T);
}
}
T->height=Max(Height(T->left),Height(T->right))+;
return T;
} AvlTree Delete(ElementType X,AvlTree T)
{
Position TmpCell;
if(T==NULL)
Error("Element not found");
else if(X<T->Element)
{
T->left=Delete(X,T->left);
if(Height(T->right)-Height(T->left)==)
{
if(Height(T->right->left)>Height(T->right->right))
T=DoubleRotateWithRight(T);
else
T=SingleRotateWithRight(T);
}
}
else if(X>T->Element)
{
T->right=Delete(X,T->left);
if(Height(T->left)-Heighe(T->right)==)
{
if(Heighe(T->left->right)>Height(T->left->left))
T=DoubleRotateWithLeft(T);
else
T=SingleRotateWithLeft(T);
}
}
//找到要删除的节点就是根节点,且根节点的左右子树都不为空
else if(T->left&&T->right)
{
if(Height(T->left)>Height(T->right))
{
T->Element=FindMax(T->left)->Element;
T->left=Delete(T->Element,T->left);
}
else
{
T->Element=FindMin(T->right)->Element;
T->right=Delete(T->Element,T->right);
}
}
//找到是根节点,但是根节点有一个或者没有子节点
else
{
TmpCell=T;
if(T->left==NULL)
T=T->right;
else if(T->right==NULL)
T=T->left;
free(TmpCell);
}
T->height=Max(Height(T->left),Height(T->right))+;
return T;
} ElementType Retrieve(Position P)
{
if(P==NULL)
return -;
else
return P->Element;
}

fatal.h

#include <stdio.h>
#include <stdlib.h> #define Error( Str ) FatalError( Str )
#define FatalError( Str ) fprintf( stderr, "%s\n", Str ), exit( 1 )

【算法学习】AVL平衡二叉搜索树原理及各项操作编程实现(C语言)的更多相关文章

  1. AVL平衡二叉搜索树原理及各项操作编程实现

    C语言版 #include<stdio.h> #include "fatal.h" struct AvlNode; typedef struct AvlNode *Po ...

  2. 二叉搜索树、AVL平衡二叉搜索树、红黑树、多路查找树

    1.二叉搜索树 1.1定义 是一棵二叉树,每个节点一定大于等于其左子树中每一个节点,小于等于其右子树每一个节点 1.2插入节点 从根节点开始向下找到合适的位置插入成为叶子结点即可:在向下遍历时,如果要 ...

  3. 手写AVL平衡二叉搜索树

    手写AVL平衡二叉搜索树 二叉搜索树的局限性 先说一下什么是二叉搜索树,二叉树每个节点只有两个节点,二叉搜索树的每个左子节点的值小于其父节点的值,每个右子节点的值大于其左子节点的值.如下图: 二叉搜索 ...

  4. 算法:非平衡二叉搜索树(UnBalanced Binary Search Tree)

    背景 很多场景下都需要将元素存储到已排序的集合中.用数组来存储,搜索效率非常高: O(log n),但是插入效率比较低:O(n).用链表来存储,插入效率和搜索效率都比较低:O(n).如何能提供插入和搜 ...

  5. 看动画学算法之:平衡二叉搜索树AVL Tree

    目录 简介 AVL的特性 AVL的构建 AVL的搜索 AVL的插入 AVL的删除 简介 平衡二叉搜索树是一种特殊的二叉搜索树.为什么会有平衡二叉搜索树呢? 考虑一下二叉搜索树的特殊情况,如果一个二叉搜 ...

  6. java二叉搜索树原理与实现

    计算机里面的数据结构 树 在计算机存储领域应用作用非常大,我之前也多次强调多磁盘的存取速度是目前计算机飞速发展的一大障碍,计算机革命性的的下一次飞跃就是看硬盘有没有质的飞跃,为什么这么说?因为磁盘是永 ...

  7. LeetCode 将一个按照升序排列的有序数组,转换为一棵高度平衡二叉搜索树

    第108题 将一个按照升序排列的有序数组,转换为一棵高度平衡二叉搜索树. 本题中,一个高度平衡二叉树是指一个二叉树每个节点 的左右两个子树的高度差的绝对值不超过 1. 示例: 给定有序数组: [-10 ...

  8. convert sorted list to binary search tree(将有序链表转成平衡二叉搜索树)

    Given a singly linked list where elements are sorted in ascending order, convert it to a height bala ...

  9. 【数据结构与算法Python版学习笔记】树——平衡二叉搜索树(AVL树)

    定义 能够在key插入时一直保持平衡的二叉查找树: AVL树 利用AVL树实现ADT Map, 基本上与BST的实现相同,不同之处仅在于二叉树的生成与维护过程 平衡因子 AVL树的实现中, 需要对每个 ...

随机推荐

  1. PostgreSQL Metadata

      http://www.devart.com/dotconnect/postgresql/docs/MetaData.html In this overload first parameter is ...

  2. 第二天-while循环 格式化输出 运算符 编码

    一.while循环 while 条件: 语句块(循环体)     #判断条件是否成立,若成立执行循环体,然后再次判断条件...直到不满足跳出循环 else: 当条件不成立的时候执行这里,和break没 ...

  3. 2806 红与黑 个人博客:doubleq.win

    个人博客:doubleq.win 2806 红与黑  时间限制: 1 s  空间限制: 64000 KB  题目等级 : 白银 Silver 题解  查看运行结果     题目描述 Descripti ...

  4. JavaWeb学习总结(一):基本概念

    一.基本概念 1.1.WEB开发的相关知识 WEB,在英语中web即表示网页的意思,它用于表示Internet主机上供外界访问的资源. Internet上供外界访问的Web资源分为: 静态web资源( ...

  5. 浅谈 Underscore.js 中 _.throttle 和 _.debounce 的差异[转]

    看的文章来自: https://blog.coding.net/blog/the-difference-between-throttle-and-debounce-in-underscorejs 使用 ...

  6. Android中使用异步线程更新UI视图的几种方法

    在Android中子线程是不能更新ui的. 所以我们要通过其他方式来动态改变ui视图, 1.runOnUiThreadactivity提供的一个轻量级更新ui的方法,在Fragment需要使用的时候要 ...

  7. 仿小米便签图文混排 EditText解决尾部插入文字bug

    一直想实现像小米便签那样的图文混排效果,收集网上的办法无非三种: 1.自定义布局,每张图片是一个ImageView,插入图片后插入EditText,缺点是实现复杂,不能像小米便签那样同时选中图片和文字 ...

  8. VUE知识day3_vue插件总结

  9. .net core系列之《对AOP思想的理解及使用AspectCore实现自定义日志拦截》

    对于AOP这个名词,相信对于搞过MVC开发的人来说,都很熟悉,里面各种各样的Filter简直是将AOP体现到了极致. 那么什么是AOP呢? AOP(Aspect Oriented Programmin ...

  10. python字典的排序

    # -*- coding:UTF-8 -*- def dict_sort(): # 按照value的值从大到小的顺序进行排序 dic = {'a': 31, 'bc': 5, 'c': 3, 'asd ...