Corn Fields
Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 16909 Accepted: 8939

Description

Farmer John has purchased a lush new rectangular pasture composed of
M by
N (1 ≤
M ≤ 12; 1 ≤
N ≤ 12) square parcels. He wants to grow some yummy corn for the cows on a number of squares. Regrettably, some of the squares are infertile and can't be planted. Canny FJ knows
that the cows dislike eating close to each other, so when choosing which squares to plant, he avoids choosing squares that are adjacent; no two chosen squares share an edge. He has not yet made the final choice as to which squares to plant.

Being a very open-minded man, Farmer John wants to consider all possible options for how to choose the squares for planting. He is so open-minded that he considers choosing no squares as a valid option! Please help Farmer John
determine the number of ways he can choose the squares to plant.

Input

Line 1: Two space-separated integers:
M and
N


Lines 2..M+1: Line
i+1 describes row
i of the pasture with
N space-separated integers indicating whether a square is fertile (1 for fertile, 0 for infertile)

Output

Line 1: One integer: the number of ways that FJ can choose the squares modulo 100,000,000.

Sample Input

2 3
1 1 1
0 1 0

Sample Output

9

Hint

Number the squares as follows:

1 2 3
  4  

There are four ways to plant only on one squares (1, 2, 3, or 4), three ways to plant on two squares (13, 14, or 34), 1 way to plant on three squares (134), and one way to plant on no squares. 4+3+1+1=9.

Source

[Submit]  
[Go Back]   [Status]  
[Discuss]





设f[i][s]表示第i行s状态下的方案数,则对于所有i - 1行与s不冲突的方案都可以转移

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define fo(i,x,y) for (int i = (x); i <= (y); i++)
#define Redge(u) for (int k = head[u]; k != -1; k = edge[k].next)
using namespace std;
const int maxn = 20,maxm = 1 << 12,INF = 1000000000,P = 100000000; inline int read(){
int out = 0,flag = 1;char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = out * 10 + c - 48; c = getchar();}
return out * flag;
} int f[maxn][maxm],N,M,le[maxm];
bool ill[maxm]; int main()
{
N = read();
M = read();
int maxv = (1 << M) - 1;
for (int i = 1; i <= N; i++){
for (int j = 1; j <= M; j++)
le[i] = (le[i] << 1) + read();
}
for (int s = 0; s <= maxv; s++){
bool sig = false; int t = s;
while (t){
if ((t & 1)&& sig) {ill[s] = true; break;}
else if (t & 1) sig = true;
else sig = false;
t >>= 1;
}
}
for (int s = 0; s <= maxv; s++){
if (!ill[s] && (s | le[1]) == le[1])
f[1][s] = 1;
}
for (int i = 2; i <= N; i++)
for (int e = 0; e <= maxv; e++){
if (ill[e] || (e | le[i]) != le[i]) continue;
for(int s = 0; s <= maxv; s++){
if (e & s) continue;
f[i][e] = (f[i][e] + f[i - 1][s]) % P;
}
}
int ans = 0;
for (int i = 0; i <= maxv; i++) ans = (ans + f[N][i]) % P;
cout<<ans<<endl;
return 0;
}

POJ P3254 Corn fields 【状压dp】的更多相关文章

  1. POJ 3254 - Corn Fields - [状压DP水题]

    题目链接:http://poj.org/problem?id=3254 Time Limit: 2000MS Memory Limit: 65536K Description Farmer John ...

  2. POJ 3254 Corn Fields (状压dp)

    题目链接:http://poj.org/problem?id=3254 给你n*m的菜地,其中1是可以种菜的,而菜与菜之间不能相邻.问有多少种情况. 状压dp入门题,将可以种菜的状态用一个数的二进制表 ...

  3. POJ 1684 Corn Fields(状压dp)

    描述 Farmer John has purchased a lush new rectangular pasture composed of M by N (1 ≤ M ≤ 12; 1 ≤ N ≤ ...

  4. [ An Ac a Day ^_^ ] POJ 3254 Corn Fields 状压dp

    题意: 有一块n*m的土地 0代表不肥沃不可以放牛 1代表肥沃可以放牛 且相邻的草地不能同时放牛 问最多有多少种放牛的方法并对1e8取模 思路: 典型的状压dp 能状态压缩 能状态转移 能状态压缩的题 ...

  5. Poj - 3254 Corn Fields (状压DP)(入门)

    题目链接:https://vjudge.net/contest/224636#problem/G 转载于:https://blog.csdn.net/harrypoirot/article/detai ...

  6. poj 3254 Corn Fields 状压dp入门

    题目链接 题意 在\(M\times N\)的\(0,1\)格子上放东西,只有标记为\(1\)的格子可以放东西,且相邻的格子不能同时放东西.问有多少种放法. 思路 参考:swallowblank. \ ...

  7. 【POJ3254】Corn Fields 状压DP第一次

    !!!!!!! 第一次学状压DP,其实就是运用位运算来实现一些比较,挺神奇的.. 为什么要发“!!!”因为!x&y和!(x&y)..感受一下.. #include <iostre ...

  8. P1879 [USACO06NOV]玉米田Corn Fields 状压dp/插头dp

    正解:状压dp/插头dp 解题报告: 链接! ……我真的太菜了……我以为一个小时前要搞完的题目调错误调了一个小时……90分到100我差不多搞了一个小时…… 然后这题还是做过的……就很气,觉得确实是要搞 ...

  9. [USACO06NOV]玉米田Corn Fields 状压DP

    题面: 农场主John新买了一块长方形的新牧场,这块牧场被划分成M行N列(1 ≤ M ≤ 12; 1 ≤ N ≤ 12),每一格都是一块正方形的土地.John打算在牧场上的某几格里种上美味的草,供他的 ...

  10. [USACO06NOV]玉米田Corn Fields (状压$dp$)

    题目链接 Solution 状压 \(dp\) . \(f[i][j][k]\) 代表前 \(i\) 列中 , 已经安置 \(j\) 块草皮,且最后一位状态为 \(k\) . 同时多记录一个每一列中的 ...

随机推荐

  1. iOS上架被拒理由及相关解决方案记录

    注:苹果客服中国区电话:4006 701 855 最近公司上线一个电动车工具类项目,被拒无数次,今天上架了,记录一下 01 苹果拒绝理由(内购和后台定位) We noticed that your a ...

  2. Python接口测试实战1(下)- 接口测试工具的使用

    如有任何学习问题,可以添加作者微信:lockingfree 课程目录 Python接口测试实战1(上)- 接口测试理论 Python接口测试实战1(下)- 接口测试工具的使用 Python接口测试实战 ...

  3. CF刷题-Codeforces Round #481-D. Almost Arithmetic Progression

    题目链接:https://codeforces.com/contest/978/problem/D 题解: 题目的大意就是:这组序列能否组成等差数列?一旦构成等差数列,等差数列的公差必定确定,而且,对 ...

  4. TPO-18 C2 Possible participation in a sociology project

    TPO-18 C2 Possible participation in a sociology project 第 1 段 1.listen to a conversation between a s ...

  5. Android 不同分辨率下调整界面

    Android Settings中有修改Disaply size的界面,通过修改Display size,能够修改屏幕分辨率. 由于修改了屏幕分辨率,有可能导致同一界面在不同的分辨率下显示出错(内容显 ...

  6. elasticserach + kibana环境搭建

    一.java环境安装: 1.安装jdk,点击下一步即可. 2.环境变量配置 1) 找到jdk安装目录:C:\Program Files\Java\jdk1.8.0_161 2) 配置环境变量 ①找到环 ...

  7. java使用jacob将office文档转换为PDF格式

    jacob 包下载地址: http://sourceforge.net/projects/jacob-project/ 下载后,将jacob 与 jacob-1.19-x64.dll放到安装jdk目录 ...

  8. clone中的浅复制和深复制

    clone:用于两个对象有相同的内容时,进行复制操作. 提示:Java中要想自定义类的对象可以被复制,自定义类就必须实现Cloneable中的clone()方法. 浅复制:另一个对象用clone()方 ...

  9. HTML5+Bootstrap 学习笔记 2

    navbar升级 从Bootstrap 2到Bootstrap 3 1. .navbar-inner已从Bootstrap 3中去除. 2. <ul class="nav"& ...

  10. openresty 安装指南

    对于一些常见的 Linux 发行版本,OpenResty 提供 官方预编译包.确保你首先用这种方式来安装. 如果您还没有下载 OpenResty 的源码包, 请到 Download 页下载. 首先,您 ...