Miller_Rabin(米勒拉宾)素数测试
2018-03-12 17:22:48
米勒-拉宾素性检验是一种素数判定法则,利用随机化算法判断一个数是合数还是可能是素数。卡内基梅隆大学的计算机系教授Gary Lee Miller首先提出了基于广义黎曼猜想的确定性算法,由于广义黎曼猜想并没有被证明,其后由以色列耶路撒冷希伯来大学的Michael O. Rabin教授作出修改,提出了不依赖于该假设的随机化算法。
问题描述:对于大整数N,判断其是否为素数。
问题求解:
若N为偶数,直接返回false,若N是奇数,则进行以下几步进行判断:
- 将N - 1分解为 2 ^ s * d 的形式,得到s 和 d的值;
- 从[1, N - 1]中随机挑选a,作为基底;
- 对每个 r in [0, s - 1],if ( a ^ d mod N != 1 && a ^{d * (2 ^ r)} mod N != -1) return N 是合数; else N有3/4的概率是素数,可以继续另选a加以判断。
举个例子:

证明:

Miller_Rabin(米勒拉宾)素数测试的更多相关文章
- Miller_Rabin(米勒拉宾)素数测试算法
首先需要知道两个定理: 1: 费马小定理: 假如p是素数,且gcd(a,p)=1,那么 a(p-1)≡1(mod p). 2:二次探测定理:如果p是素数,x是小于p的正整数,且,那么要么x=1,要么x ...
- Miller_Rabin (米勒-拉宾) 素性测试
之前一直对于这个神奇的素性判定方法感到痴迷而又没有时间去了解.借着学习<信息安全数学基础>将素性这一判定方法学习一遍. 首先证明一下费马小定理. 若p为素数,且gcd(a, p)=1, 则 ...
- csu 1552(米勒拉宾素数测试+二分图匹配)
1552: Friends Time Limit: 3 Sec Memory Limit: 256 MBSubmit: 723 Solved: 198[Submit][Status][Web Bo ...
- POJ 1811Prime Test(米勒拉宾素数测试)
直接套用模板,以后接着用 这里还有一个素因子分解的模板 #include <map> #include <set> #include <stack> #includ ...
- GCDLCM 【米勒_拉宾素数检验 (判断大素数)】
GCDLCM 题目链接(点击) 题目描述 In FZU ACM team, BroterJ and Silchen are good friends, and they often play some ...
- 计蒜客 25985.Goldbach-米勒拉宾素数判定(大素数) (2018 ACM-ICPC 中国大学生程序设计竞赛线上赛 B)
若干年之前的一道题,当时能写出来还是超级开心的,虽然是个板子题.一直忘记写博客,备忘一下. 米勒拉判大素数,关于米勒拉宾是个什么东西,传送门了解一下:biubiubiu~ B. Goldbach 题目 ...
- FZU 1649 Prime number or not米勒拉宾大素数判定方法。
C - Prime number or not Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%I64d & % ...
- HDU 2138 How many prime numbers (判素数,米勒拉宾算法)
题意:给定一个数,判断是不是素数. 析:由于数太多,并且太大了,所以以前的方法都不适合,要用米勒拉宾算法. 代码如下: #include <iostream> #include <c ...
- HDU2138 & 米勒拉宾模板
题意: 给出n个数,判断它是不是素数. SOL: 米勒拉宾裸题,思想方法略懂,并不能完全理解,所以实现只能靠背模板.... 好在不是很长... Code: /*==================== ...
随机推荐
- 利用Linux系统生成随机密码的8种方法
Linux操作系统的一大优点是对于同样一件事情,你可以使用高达数百种方法来实现它.例如,你可以通过数十种方法来生成随机密码.本文将介绍生成随机密码的十种方法. 1. 使用SHA算法来加密日期,并输出结 ...
- Mysql的存储引擎和索引
可以说数据库必须有索引,没有索引则检索过程变成了顺序查找,O(n)的时间复杂度几乎是不能忍受的.我们非常容易想象出一个只有单关键字组成的表如何使用B+树进行索引,只要将关键字存储到树的节点即可.当数据 ...
- kibana 和ES安装配置常见问题解决
1.下载相同版本的kibana和ES: es5.6.5下载地址:https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-5 ...
- Online handwriting recognition using multi convolution neural networks
w可以考虑从计算机的“机械性.重复性”特征去设计“低效的”算法. https://www.codeproject.com/articles/523074/webcontrols/ Online han ...
- I/O排查命令
I/O可以说是问题大户,线上的问题经常都是它引起的,很多人却不知道怎么定位这种问题.今天简单介绍一下,在此抛砖引玉. 此类问题我们一般分三步定位:按系统级I/O.进程级I/O.业务级I/O定位即可,一 ...
- Python开发【Django】:中间件、CSRF
CSRF 1.概述 CSRF(Cross Site Request Forgery)跨站点伪造请求,举例来讲,某个恶意的网站上有一个指向你的网站的链接,如果某个用户已经登录到你的网站上了,那么当这个用 ...
- 爬虫之BeautifulSoup
BeautifulSoup是一个模块,该模块用于接收一个HTML或XML字符串,然后将其进行格式化,之后便可以使用他提供的方法进行快速查找指定元素,从而使得在HTML或XML中查找指定元素变得简单. ...
- Day20 javaWeb监听器和国际化
day20 JavaWeb监听器 三大组件: Servlet Listener Filter Listener:监听器 初次相见:AWT 二次相见:SAX 监听器: 它是一个接口,内容由我们来 ...
- mysql数据库导入黑窗口导入导出数据
一.导出数据库用mysqldump命令(注意mysql的安装路径,即此命令的路径):1.导出数据和表结构:mysqldump -u用户名 -p密码 数据库名 > 数据库名.sql#/usr/l ...
- LeetCode——Palindrome Number
Determine whether an integer is a palindrome. Do this without extra space. Some hints: Could negativ ...