Sift和Surf算法实现两幅图像拼接的过程是一样的,主要分为4大部分:

  • 1. 特征点提取和描述
  • 2. 特征点配对,找到两幅图像中匹配点的位置
  • 3. 通过配对点,生成变换矩阵,并对图像1应用变换矩阵生成对图像2的映射图像
  • 4. 图像2拼接到映射图像上,完成拼接

过程1、2、3没啥好说的了,关键看看步骤4中的拼接部分。这里先采用比较简单一点的拼接方式来实现:

  • 1. 找到图像1和图像2中最强的匹配点所在的位置
  • 2. 通过映射矩阵变换,得到图像1的最强匹配点经过映射后投影到新图像上的位置坐标
  • 3. 在新图像上的最强匹配点的映射坐标处,衔接两幅图像,该点左侧图像完全是图像1,右侧完全是图像2

这里拼接的正确与否完全取决于特征点的选取,如果选取的是错误匹配的特征点,拼接一定失败,所以这里选了排在第一个的最强的匹配点,作为拼接点。

测试用例一原图1:

测试用例一原图2:

Sift拼接效果:

Surf拼接效果:

本例中最强匹配点的位置在图中红色小汽车附近,可以看到有一条像折痕一样的线条,这个就是两个图片的拼接线,并且如果图1和图2在拼接处的光线条件有变化的还,拼接后在衔接处左右就会显得很突兀,如Surf拼接中。拼接效果Sift貌似要比Surf好一点。

测试用例二原图1:

测试用例二原图2:

Sift拼接效果:

Surf拼接效果:

以下是Opencv实现:

#include "highgui/highgui.hpp"
#include "opencv2/nonfree/nonfree.hpp"
#include "opencv2/legacy/legacy.hpp" using namespace cv; //计算原始图像点位在经过矩阵变换后在目标图像上对应位置
Point2f getTransformPoint(const Point2f originalPoint,const Mat &transformMaxtri); int main(int argc,char *argv[])
{
Mat image01=imread(argv[1]);
Mat image02=imread(argv[2]);
imshow("拼接图像1",image01);
imshow("拼接图像2",image02); //灰度图转换
Mat image1,image2;
cvtColor(image01,image1,CV_RGB2GRAY);
cvtColor(image02,image2,CV_RGB2GRAY); //提取特征点
SiftFeatureDetector siftDetector(800); // 海塞矩阵阈值
vector<KeyPoint> keyPoint1,keyPoint2;
siftDetector.detect(image1,keyPoint1);
siftDetector.detect(image2,keyPoint2); //特征点描述,为下边的特征点匹配做准备
SiftDescriptorExtractor siftDescriptor;
Mat imageDesc1,imageDesc2;
siftDescriptor.compute(image1,keyPoint1,imageDesc1);
siftDescriptor.compute(image2,keyPoint2,imageDesc2); //获得匹配特征点,并提取最优配对
FlannBasedMatcher matcher;
vector<DMatch> matchePoints;
matcher.match(imageDesc1,imageDesc2,matchePoints,Mat());
sort(matchePoints.begin(),matchePoints.end()); //特征点排序
//获取排在前N个的最优匹配特征点
vector<Point2f> imagePoints1,imagePoints2;
for(int i=0;i<10;i++)
{
imagePoints1.push_back(keyPoint1[matchePoints[i].queryIdx].pt);
imagePoints2.push_back(keyPoint2[matchePoints[i].trainIdx].pt);
} //获取图像1到图像2的投影映射矩阵,尺寸为3*3
Mat homo=findHomography(imagePoints1,imagePoints2,CV_RANSAC);
Mat adjustMat=(Mat_<double>(3,3)<<1.0,0,image01.cols,0,1.0,0,0,0,1.0);
Mat adjustHomo=adjustMat*homo; //获取最强配对点在原始图像和矩阵变换后图像上的对应位置,用于图像拼接点的定位
Point2f originalLinkPoint,targetLinkPoint,basedImagePoint;
originalLinkPoint=keyPoint1[matchePoints[0].queryIdx].pt;
targetLinkPoint=getTransformPoint(originalLinkPoint,adjustHomo);
basedImagePoint=keyPoint2[matchePoints[0].trainIdx].pt; //图像配准
Mat imageTransform1;
warpPerspective(image01,imageTransform1,adjustMat*homo,Size(image02.cols+image01.cols+10,image02.rows)); //在最强匹配点的位置处衔接,最强匹配点左侧是图1,右侧是图2,这样直接替换图像衔接不好,光线有突变
Mat ROIMat=image02(Rect(Point(basedImagePoint.x,0),Point(image02.cols,image02.rows)));
ROIMat.copyTo(Mat(imageTransform1,Rect(targetLinkPoint.x,0,image02.cols-basedImagePoint.x+1,image02.rows))); namedWindow("拼接结果",0);
imshow("拼接结果",imageTransform1);
waitKey();
return 0;
} //计算原始图像点位在经过矩阵变换后在目标图像上对应位置
Point2f getTransformPoint(const Point2f originalPoint,const Mat &transformMaxtri)
{
Mat originelP,targetP;
originelP=(Mat_<double>(3,1)<<originalPoint.x,originalPoint.y,1.0);
targetP=transformMaxtri*originelP;
float x=targetP.at<double>(0,0)/targetP.at<double>(2,0);
float y=targetP.at<double>(1,0)/targetP.at<double>(2,0);
return Point2f(x,y);
}

对于衔接处存在的缝隙问题,有一个解决办法是按一定权重叠加图1和图2的重叠部分,在重叠处图2的比重是1,向着图1的方向,越远离衔接处,图1的权重越来越大,图2的权重越来越低,实现平稳过渡按照这个思路优化过的代码如下:

#include "highgui/highgui.hpp"
#include "opencv2/nonfree/nonfree.hpp"
#include "opencv2/legacy/legacy.hpp" using namespace cv; //计算原始图像点位在经过矩阵变换后在目标图像上对应位置
Point2f getTransformPoint(const Point2f originalPoint,const Mat &transformMaxtri); int main(int argc,char *argv[])
{
Mat image01=imread(argv[1]);
Mat image02=imread(argv[2]);
imshow("拼接图像1",image01);
imshow("拼接图像2",image02); //灰度图转换
Mat image1,image2;
cvtColor(image01,image1,CV_RGB2GRAY);
cvtColor(image02,image2,CV_RGB2GRAY); //提取特征点
SiftFeatureDetector siftDetector(800); // 海塞矩阵阈值
vector<KeyPoint> keyPoint1,keyPoint2;
siftDetector.detect(image1,keyPoint1);
siftDetector.detect(image2,keyPoint2); //特征点描述,为下边的特征点匹配做准备
SiftDescriptorExtractor siftDescriptor;
Mat imageDesc1,imageDesc2;
siftDescriptor.compute(image1,keyPoint1,imageDesc1);
siftDescriptor.compute(image2,keyPoint2,imageDesc2); //获得匹配特征点,并提取最优配对
FlannBasedMatcher matcher;
vector<DMatch> matchePoints;
matcher.match(imageDesc1,imageDesc2,matchePoints,Mat());
sort(matchePoints.begin(),matchePoints.end()); //特征点排序
//获取排在前N个的最优匹配特征点
vector<Point2f> imagePoints1,imagePoints2;
for(int i=0;i<10;i++)
{
imagePoints1.push_back(keyPoint1[matchePoints[i].queryIdx].pt);
imagePoints2.push_back(keyPoint2[matchePoints[i].trainIdx].pt);
} //获取图像1到图像2的投影映射矩阵,尺寸为3*3
Mat homo=findHomography(imagePoints1,imagePoints2,CV_RANSAC);
Mat adjustMat=(Mat_<double>(3,3)<<1.0,0,image01.cols,0,1.0,0,0,0,1.0);
Mat adjustHomo=adjustMat*homo; //获取最强配对点在原始图像和矩阵变换后图像上的对应位置,用于图像拼接点的定位
Point2f originalLinkPoint,targetLinkPoint,basedImagePoint;
originalLinkPoint=keyPoint1[matchePoints[0].queryIdx].pt;
targetLinkPoint=getTransformPoint(originalLinkPoint,adjustHomo);
basedImagePoint=keyPoint2[matchePoints[0].trainIdx].pt; //图像配准
Mat imageTransform1;
warpPerspective(image01,imageTransform1,adjustMat*homo,Size(image02.cols+image01.cols+110,image02.rows)); //在最强匹配点左侧的重叠区域进行累加,是衔接稳定过渡,消除突变
Mat image1Overlap,image2Overlap; //图1和图2的重叠部分
image1Overlap=imageTransform1(Rect(Point(targetLinkPoint.x-basedImagePoint.x,0),Point(targetLinkPoint.x,image02.rows)));
image2Overlap=image02(Rect(0,0,image1Overlap.cols,image1Overlap.rows));
Mat image1ROICopy=image1Overlap.clone(); //复制一份图1的重叠部分
for(int i=0;i<image1Overlap.rows;i++)
{
for(int j=0;j<image1Overlap.cols;j++)
{
double weight;
weight=(double)j/image1Overlap.cols; //随距离改变而改变的叠加系数
image1Overlap.at<Vec3b>(i,j)[0]=(1-weight)*image1ROICopy.at<Vec3b>(i,j)[0]+weight*image2Overlap.at<Vec3b>(i,j)[0];
image1Overlap.at<Vec3b>(i,j)[1]=(1-weight)*image1ROICopy.at<Vec3b>(i,j)[1]+weight*image2Overlap.at<Vec3b>(i,j)[1];
image1Overlap.at<Vec3b>(i,j)[2]=(1-weight)*image1ROICopy.at<Vec3b>(i,j)[2]+weight*image2Overlap.at<Vec3b>(i,j)[2];
}
}
Mat ROIMat=image02(Rect(Point(image1Overlap.cols,0),Point(image02.cols,image02.rows))); //图2中不重合的部分
ROIMat.copyTo(Mat(imageTransform1,Rect(targetLinkPoint.x,0, ROIMat.cols,image02.rows))); //不重合的部分直接衔接上去
namedWindow("拼接结果",0);
imshow("拼接结果",imageTransform1);
imwrite("D:\\拼接结果.jpg",imageTransform1);
waitKey();
return 0;
} //计算原始图像点位在经过矩阵变换后在目标图像上对应位置
Point2f getTransformPoint(const Point2f originalPoint,const Mat &transformMaxtri)
{
Mat originelP,targetP;
originelP=(Mat_<double>(3,1)<<originalPoint.x,originalPoint.y,1.0);
targetP=transformMaxtri*originelP;
float x=targetP.at<double>(0,0)/targetP.at<double>(2,0);
float y=targetP.at<double>(1,0)/targetP.at<double>(2,0);
return Point2f(x,y);
}

Sift拼接效果:

Surf拼接效果:

拼接处的线条消失了,也没有见突兀的光线变化,基本实现了无缝拼接。

测试用例三原图1:

测试用例三原图2:

拼接效果:

Opencv Sift和Surf特征实现图像无缝拼接生成全景图像的更多相关文章

  1. Opencv中使用Surf特征实现图像配准及对透视变换矩阵H的平移修正

    图像配准需要将一张测试图片按照第二张基准图片的尺寸.角度等形态信息进行透视(仿射)变换匹配,本例通过Surf特征的定位和匹配实现图像配准. 配准流程: 1. 提取两幅图像的Surf特征 2. 对Sur ...

  2. 【OpenCV新手教程之十八】OpenCV仿射变换 &amp; SURF特征点描写叙述合辑

    本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/33320997 作者:毛星云(浅墨)  ...

  3. Opencv 使用Stitcher类图像拼接生成全景图像

    Opencv中自带的Stitcher类可以实现全景图像,效果不错.下边的例子是Opencv Samples中的stitching.cpp的简化,源文件可以在这个路径里找到: \opencv\sourc ...

  4. python opencv SIFT,获取特征点的坐标位置

    备注:SIFT算法的实质是在不同的尺度空间上查找关键点(特征点),并计算出关键点的方向.SIFT所查找到的关键点是一些十分突出,不会因光照,仿射变换和噪音等因素而变化的点,如角点.边缘点.暗区的亮点及 ...

  5. SIFT和SURF特征(草稿)

    (草稿) https://www.cnblogs.com/gavanwanggw/p/7073905.html

  6. 【OpenCV新手教程之十七】OpenCV重映射 &amp; SURF特征点检測合辑

    本系列文章由@浅墨_毛星云 出品.转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/30974513 作者:毛星云(浅墨)  ...

  7. OpenCV教程(47) sift特征和surf特征

         在前面三篇教程中的几种角检测方法,比如harris角检测,都是旋转无关的,即使我们转动图像,依然能检测出角的位置,但是图像缩放后,harris角检测可能会失效,比如下面的图像,图像放大之前可 ...

  8. opencv surf特征点匹配拼接源码

    http://blog.csdn.net/huixingshao/article/details/42672073 /** * @file SURF_Homography * @brief SURF ...

  9. sift、surf、orb 特征提取及最优特征点匹配

    目录 sift sift特征简介 sift特征提取步骤 surf surf特征简介 surf特征提取步骤 orb orb特征简介 orb特征提取算法 代码实现 特征提取 特征匹配 附录 sift si ...

随机推荐

  1. Linux 网卡驱动学习(九)(层二转发)

    1.mac 地址表的自学习过程 port1上的A计算机要与port2上的B计算机通信时,A发到交换机上,交换机收到信息后,交换机先记录发port1所相应的a的mac地址并记录在自己的mac表中,然后再 ...

  2. amazeui学习笔记一(开始使用1)--主干

    amazeui学习笔记一(开始使用1)--主干 一.总结 1.英语:学好英语,编程轻松很多 2. layouts compatibility change log web app collection ...

  3. HTML基础第六讲---表格

    转自:https://i.cnblogs.com/posts?categoryid=1121494 上一讲,讲了关于<控制表格及其表项的对齐方式>,在这里我要讲讲表格及其属性 ,然后大家在 ...

  4. idea 配置文件导出,导入

    俗话说的好,磨刀不误砍柴工.配置好自己的工具,这样撸码就会更爽. 来来来,傻瓜式配图开始. 点击后会出现有一个导出设置框默认为全部导出 点击...处 可设置导出的settings.jar包的位置 在新 ...

  5. Stable Matching (Gale Sharpley Algorithm)

    稳定婚配问题:n个男生n个女生.当中每一个人都有自己心仪的列表. 问怎样达成稳定的匹配(比方, b想B求婚,可是B已有的对象的优先级高于b,此时b的魅力不足以拆散B所处的那一对,即达到稳定状态.) ( ...

  6. 什么是MVC,什么是WCF

    在C#中总会遇到这几个概念,网上搜了一下,做一下总结和比较,东拼西凑,如有雷同,纯属直接拷贝,人懒,但无意侵权. 1.什么是MVC MVC是三个单词的首字母缩写,它们是Model(模型).View(视 ...

  7. Java基础学习总结(50)——Java事务处理总结

    一.什么是Java事务 通常的观念认为,事务仅与数据库相关. 事务必须服从ISO/IEC所制定的ACID原则.ACID是原子性(atomicity).一致性(consistency).隔离性(isol ...

  8. 使用wepy开发微信小程序商城第三篇:购物车(布局篇)

    使用wepy开发微信小程序商城 第三篇:购物车(布局篇) 前两篇如下: 使用wepy开发微信小程序商城第一篇:项目初始化 使用wepy开发微信小程序商城第二篇:路由配置和页面结构 基于上两篇内容,开始 ...

  9. POJ 1595 Prime Cuts (ZOJ 1312) 素数打表

    ZOJ:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=312 POJ:http://poj.org/problem?id=159 ...

  10. (转)chrome浏览器收藏夹(书签)的导出与导入

    导出chrome浏览器的书签到一个文件中.首先选择chrome浏览器的书签管理器菜单.然后点击“整理”,然后选择“将书签导出到html文件”. 步骤阅读 2 将导出的html文件保存,用于下次导入,这 ...