John Doe, a skilled pilot, enjoys traveling. While on vacation, he rents a small plane and starts visiting

beautiful places. To save money, John must determine the shortest closed tour that connects his

destinations. Each destination is represented by a point in the plane pi =< xi

, yi >. John uses the

following strategy: he starts from the leftmost point, then he goes strictly left to right to the rightmost

point, and then he goes strictly right back to the starting point. It is known that the points have

distinct x-coordinates.

Write a program that, given a set of n points in the plane, computes the shortest closed tour that

connects the points according to John’s strategy.

Input

The program input is from a text file. Each data set in the file stands for a particular set of points. For

each set of points the data set contains the number of points, and the point coordinates in ascending

order of the x coordinate. White spaces can occur freely in input. The input data are correct.

Output

For each set of data, your program should print the result to the standard output from the beginning

of a line. The tour length, a floating-point number with two fractional digits, represents the result.

Note: An input/output sample is in the table below. Here there are two data sets. The first one

contains 3 points specified by their x and y coordinates. The second point, for example, has the x

coordinate 2, and the y coordinate 3. The result for each data set is the tour length, (6.47 for the first

data set in the given example).

Sample Input

3

1 1

2 3

3 1

4

1 1

2 3

3 1

4 2

Sample Output

6.47

7.89

这题就是DP,思路什么的书上说的很清楚了

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
using namespace std;
int n;
struct node
{
double x,y;
}a[];
double dis[][];
double dp[][];
int main()
{
while(scanf("%d",&n)==)
{
for(int i=;i<=n;i++)
{
scanf("%lf%lf",&a[i].x,&a[i].y);
for(int j=i-;j>=;j--)
dis[j][i]=sqrt(((a[i].x-a[j].x)*(a[i].x-a[j].x))+((a[i].y-a[j].y)*(a[i].y-a[j].y)));
}
//pre();
for(int i=n-;i>=;i--)
dp[n-][i]=dis[n-][n]+dis[i][n];
for(int i=n-;i>=;i--)
for(int j=i-;j>=;j--)
dp[i][j]=min(dp[i+][j]+dis[i][i+],dp[i+][i]+dis[j][i+]);
printf("%.2lf\n",dp[][]+dis[][]);
}
return ;
}

Tour UVA - 1347的更多相关文章

  1. ACM - 动态规划 - UVA 1347 Tour

    UVA 1347 Tour 题解 题目大意:有 \(n\) 个点,给出点的 \(x\).\(y\) 坐标.找出一条经过所有点一次的回路,从最左边的点出发,严格向右走,到达最右点再严格向左,回到最左点. ...

  2. UVa 1347 Tour

    Tour Time Limit: 3000MS   Memory Limit: Unknown   64bit IO Format: %lld & %llu Description   Joh ...

  3. UVA 1347 Tour 【双调旅行商/DP】

    John Doe, a skilled pilot, enjoys traveling. While on vacation, he rents a small plane and starts vi ...

  4. 【UVa 1347】Tour

    [Link]:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_probl ...

  5. UVA 1347(POJ 2677) Tour(双色欧几里德旅行商问题)

    Description John Doe, a skilled pilot, enjoys traveling. While on vacation, he rents a small plane a ...

  6. UVa 1347 (双线程DP) Tour

    题意: 平面上有n个坐标均为正数的点,按照x坐标从小到大一次给出.求一条最短路线,从最左边的点出发到最右边的点,再回到最左边的点.除了第一个和最右一个点其他点恰好只经过一次. 分析: 可以等效为两个人 ...

  7. UVA - 1347 Tour(DP + 双调旅行商问题)

    题意:给出按照x坐标排序的n个点,让我们求出从最左端点到最右短点然后再回来,并且经过所有点且只经过一次的最短路径. 分析:这个题目刘汝佳的算法书上也有详解(就在基础dp那一段),具体思路如下:按照题目 ...

  8. UVA 1347 Tour 双调TSP

    TSP是NP难,但是把问题简化,到最右点之前的巡游路线只能严格向右,到最右边的点以后,返回的时候严格向左,这个问题就可以在多项式时间内求出来了. 定义状态d[i][j]表示一个人在i号点,令一个人在j ...

  9. UVA 1347"Tour"(经典DP)

    传送门 参考资料: [1]:紫书 题意: 欧几里得距离???? 题解: AC代码: #include<bits/stdc++.h> using namespace std; ; int n ...

随机推荐

  1. adjtimex修改tick值用法举例

    测试 用户态下内核时钟计数间隔,默认都是100HZ.因此单个tick代表了10^4 us. 可以设置每个tick代表的时钟长度,因此把tick增加1(即增加为10001us)的影响是每天时间快8.64 ...

  2. sysbench测试阿里云CPU

    参考 https://wiki.mikejung.biz/Benchmarking 买了一个1核的ECS,测试一下CPU性能 第一次是只用1个thread去跑 [root@iZwz9fy718twfi ...

  3. Shell 脚本编程 基本语法:

    Shell 脚本编程语法: 注: 文章来源 http://www.cnblogs.com/yunquan/p/6821850.html 视频来源:https://www.bilibili.com/vi ...

  4. 第二节:Series基本属性及方法(下)

  5. SIM900A 发送AT+CSTT 总是 返回Error的原因分析

    检查 模块的供电是否正常 本例 修改供电后 联网恢复正常.

  6. nyoj_513_A+B Problem IV_20130131532

    A+B Problem IV 时间限制:1000 ms  |           内存限制:65535 KB 难度:3   描述 acmj最近发现在使用计算器计算高精度的大数加法时很不方便,于是他想着 ...

  7. Spring MVC-表单(Form)标签-隐藏字段(Hidden Field)示例(转载实践)

    以下内容翻译自:https://www.tutorialspoint.com/springmvc/springmvc_hidden.htm 说明:示例基于Spring MVC 4.1.6. 以下示例显 ...

  8. 一个神奇的PHP框架:Phalcon 之编译安装

    前言 CentOS7下升级PHP到最新版本以及编译安装phalcon框架,看相关文档无数遍,自己尝试编译安装之后才理解的更深,编译步骤以及碰到的问题做个简单的记录 php-7.0.11编译安装 1.下 ...

  9. springmvc 解析xml数据

    springmvc 解析xml数据 http://blog.csdn.net/zhi_jun/article/details/37925475

  10. 1215-Cannot add foreign key constraint

    1.错误描写叙述 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQv/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/ ...