题目链接:http://codeforces.com/contest/618/problem/F

题目:

题目大意:

有两个大小为 N 的可重集 A, B, 每个元素都在 1 到 N 之间. 分别找出 A 和 B 的一个子集, 使得这两个子集元素之和相等.

分别输出集合A和集合B的子集的个数以及子集中元素在原集合中的位置

N ≤ $10^6$

题解:

首先我们证明一个结论,存在一组方案,满足两个子集在A中和在B中都是连续的一段

把两个集合看成两个数组,分别计算出前缀和sa,sb

对于每个i(0<=i<=n),我们j为满足0<=sa[i]-sb[j]<=n-1的最大的j,设d[i]=sa[i]-sb[j],可以发现j的单调递增的

我们发现d数组一共有n+1个元素(包括i=0,sa[i]=0的情况),并且我们又发现d[i]的取值只有n个。那么根据抽屉原理,至少有两个d数组中的元素是相等的

于是我们有sa[i']-sb[j']=sa[i]-sb[j](i'>i)

移项之后得到sa[i']-sa[i]=sb[j']-sb[j]

这个时候我们就知道在A数组中i+1~i'这一段元素之和与B数组中j+1~j'这一段元素之和相等

证毕

其实上面的证明过程就是我们本题的做法,我们用two pointers处理出d数组,然后判断当前的d值在之前是否出现过,这个时候我们就得到了答案

值得注意的是,我们需要sa[n]<=sb[n],因为若是sa[n]>sb[n]可能出现对于i=n找不到一个j满足上述条件

代码:

#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
using namespace std; const int N=1e6+;
int n,cnt1,cnt2,st1,st2,ed1,ed2;
int sa[N],sb[N],vis[N],p[N];
inline int read()
{
char ch=getchar();
int s=,f=;
while (ch<''||ch>'') {if (ch=='-') f=-;ch=getchar();}
while (ch>=''&&ch<='') {s=(s<<)+(s<<)+ch-'';ch=getchar();}
return s*f;
}
void solve(int a[],int b[])
{
memset(vis,-,sizeof(vis));
int j=;
for (int i=;i<=n;i++)
{
while (a[i]-b[j]>=n) j++;
int d=a[i]-b[j];
if (vis[d]!=-)
{
cnt1=i-vis[d];
st1=vis[d]+;ed1=i;
cnt2=j-p[vis[d]];
st2=p[vis[d]]+;ed2=j;
break;
}
vis[d]=i;p[i]=j;
}
}
int main()
{
n=read();
for (int i=;i<=n;i++) sa[i]=sa[i-]+read();
for (int i=;i<=n;i++) sb[i]=sb[i-]+read();
if (sa[n]<=sb[n])
{
solve(sa,sb);
}
else
{
solve(sb,sa);swap(cnt1,cnt2);swap(st1,st2);swap(ed1,ed2);
}
printf("%d\n",cnt1);
for (int i=st1;i<=ed1;i++) printf("%d ",i);
printf("\n");
printf("%d\n",cnt2);
for (int i=st2;i<=ed2;i++) printf("%d ",i);
printf("\n");
return ;
}

[codeforces 618 F] Double Knapsack (抽屉原理)的更多相关文章

  1. Wunder Fund Round 2016 (Div. 1 + Div. 2 combined) F. Double Knapsack 鸽巢原理 构造

    F. Double Knapsack 题目连接: http://www.codeforces.com/contest/618/problem/F Description You are given t ...

  2. CF618F Double Knapsack 构造、抽屉原理

    传送门 首先,选取子集的限制太宽了,子集似乎只能枚举,不是很好做.考虑加强限制条件:将"选取子集"的限制变为"选取子序列"的限制.在接下来的讨论中我们将会知道: ...

  3. 2018.09.27 codeforces618F. Double Knapsack(抽屉原理+构造)

    传送门 思维题. 考虑维护两个数列的前缀和a1,a2,a3,...,ana_1,a_2,a_3,...,a_na1​,a2​,a3​,...,an​和b1,b2,b3,...,bnb_1,b_2,b_ ...

  4. CodeForces 485A Factory (抽屉原理)

    A. Factory time limit per test 1 second memory limit per test 256 megabytes input standard input out ...

  5. Codeforces Round #319 (Div. 2) B. Modulo Sum 抽屉原理+01背包

    B. Modulo Sum time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...

  6. Codeforces 958C3 - Encryption (hard) 区间dp+抽屉原理

    转自:http://www.cnblogs.com/widsom/p/8863005.html 题目大意: 比起Encryption 中级版,把n的范围扩大到 500000,k,p范围都在100以内, ...

  7. 51nod 1103 N的倍数(抽屉原理)

    1103 N的倍数 题目来源: Ural 1302 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 难度:4级算法题 一个长度为N的数组A,从A中选出若干个数,使得这些数的和是N的倍 ...

  8. 【CF618F】Double Knapsack(构造)

    [CF618F]Double Knapsack(构造) 题面 洛谷 Codeforces 题解 很妙的一道题. 发现找两个数集很不爽,我们强制加强限制,我们来找两个区间,使得他们的区间和相等. 把区间 ...

  9. bzoj#4722-由乃【倍增,抽屉原理,bitset】

    正题 题目链接:https://darkbzoj.tk/problem/4722 题目大意 给出一个长度为\(n\)的序列值域为\([0,v)\),要求支持操作 询问一个区间能否找到两个没有交的非空下 ...

随机推荐

  1. C++异常注意事项

    C++里面catch对于类型转换,限制比参数传递时候要多: 不可以进行标准算术转换和类的自定义转换:在函数参数匹配的过程中,可以进行很多的类型转换.但是在异常匹配的过程中,转换的规则要严厉. 标准算术 ...

  2. HDU 1023

    卡特兰数.把进栈看成是+1,出栈看成是-1,任何时候部分和都有a1+a2+....ak>=0.求这样的数列的个数.这明显是卡特兰数的一个解释嘛.在<组合数学>这本书就有这样的原本的证 ...

  3. HDU 4415 Assassin&#39;s Creed(贪心)

    pid=4415">HDU 4415 题意: 壮哉我Assassin! E叔有一柄耐久度为m的袖剑,以及n个目标士兵要去解决. 每解决掉一个士兵,消耗袖剑Ai的耐久度.且获得该士兵的武 ...

  4. 基于对话框的应用程序,点击button打开一个网页

    核心:使用Webbrowser控件 加入一个新的对话框,右键 Insert ActiveX control,选中 双击对话框生成响应的类(Web).并为webbrowser绑定成员变量(m_Web) ...

  5. m_Orchestrate learning system---十四、数据表中字段命名规则

    m_Orchestrate learning system---十四.数据表中字段命名规则 一.总结 一句话总结:a.保证唯一 b.见名知意 1.注意php中的数组类函数和字符串类函数的前缀? 数组类 ...

  6. java算法数据结构

    原文地址:github.com/kdn251/interviews 译文出自:掘金翻译计划 译者:王下邀月熊 校对者:PhxNirvana.根号三 这个 链接 用来查看本翻译与英文版是否有差别(如果你 ...

  7. Generating SSH Keys for github

    由于最近电脑重装了Windows 8.1, 想用github维护一些代码.故不得不重新生成一下ssh key. 按https://help.github.com/articles/generating ...

  8. swift语言点评十七-Designated Initializers and Convenience Initializers

    Swift defines two kinds of initializers for class types to help ensure all stored properties receive ...

  9. HDU-5693 D Game 动态规划 两次动规

    题目链接:https://cn.vjudge.net/problem/HDU-5693 题意 中文题 这个游戏是这样的,首先度度熊拥有一个公差集合{D},然后它依次写下N个数字排成一行.游戏规则很简单 ...

  10. 找tensorboard

    一开始因为用户不对,提示tensorboard:未找到命令 切换正确账户寻找tensorboard 然后打开Xstart,输入firefox,把链接输入进去 即可