【POJ 2750】 Potted Flower(线段树套dp)
【POJ 2750】 Potted Flower(线段树套dp)
Time Limit: 2000MS | Memory Limit: 65536K | |
Total Submissions: 4566 | Accepted: 1739 |
Description
how attractive it is. See the following graph as an example:
(Positions of potted flowers are assigned to index numbers in the range of 1 ... N. The i-th pot and the (i + 1)-th pot are consecutive for any given i (1 <= i < N), and 1st pot is next to N-th pot in addition.)

The board chairman informed the little cat to construct "ONE arc-style cane-chair" for tourists having a rest, and the sum of attractive values of the flowers beside the cane-chair should be as large as possible. You should notice that a cane-chair cannot be
a total circle, so the number of flowers beside the cane-chair may be 1, 2, ..., N - 1, but cannot be N. In the above example, if we construct a cane-chair in the position of that red-dashed-arc, we will have the sum of 3+(-2)+1+2=4, which is the largest among
all possible constructions.
Unluckily, some booted cats always make trouble for the little cat, by changing some potted flowers to others. The intelligence agency of little cat has caught up all the M instruments of booted cats' action. Each instrument is in the form of "A B", which means
changing the A-th potted flowered with a new one whose attractive value equals to B. You have to report the new "maximal sum" after each instruction.
Input
The second line contains N integers, which are the initial attractive value of each potted flower. The i-th number is for the potted flower on the i-th position.
A single integer M (4 <= M <= 100000) in the third input line, and the following M lines each contains an instruction "A B" in the form described above.
Restriction: All the attractive values are within [-1000, 1000]. We guarantee the maximal sum will be always a positive integer.
Output
Sample Input
5
3 -2 1 2 -5
4
2 -2
5 -5
2 -4
5 -1
Sample Output
4
4
3
5
Source
不知道这样说够不够准确 总的来说就是把dp的思想加到了线段树中。
在我感觉肯定能A的时候给我了个WA 在我万念俱灰的时候给我了个AC。。。
首先依据题目 n个点构成的环 要求求出最大的连续子序列 n与1是相邻的(环的性质)
仅仅到这里事实上有两种状态 如果从1,n处断开 最大子序列就是[L,R](L <= R)
然而成环 又会出现[1,R]+[L,n]这样的绕过一圈的情况 事实上也好做 用总和减去1~n链的最小子序列和就好
对于求链的最大子序列和 能够由tr[root].max = max(max(tr[root<<1].max,tr[root<<1|1].max),tr[root>>1].lmax+tr[root>>1|1].rmax) 得出
即为左区间最大子序列和 右区间最大子序列和 左区间右连续的最大子序列和+右区间左连续的最大子序列和 这三个中最大的那个
罪域最小子序列和也是一样 能够由tr[root].min = min(min(tr[root<<1].min,tr[root<<1|1].min),tr[root>>1].lmin+tr[root>>1|1].rmin) 得出
即为左区间最小子序列和 右区间最小子序列和 左区间右连续的最小子序列和+右区间左连续的最小子序列和 这三个中最小的那个
这样答案也非常好得出了 ans = max( tr[1].max,tr[1].sum-tr[1].min );
然而这样会WA 最关键的一点没有注意啊!
。不能够把1~n所有选取 意思也就是说这个最大子序列和不能够是整个环 意思也就是说上面的做法通通WA啊……………………………………………………………………………………………………………………………………………………………………………………
只是莫操心。
。我不是在逗你玩。。。。
(放下板砖 施主听鰯讲。。。
事实上仅仅要统计一下负数的个数即可了 假设存在负数 那就说明最大子序列和肯定不会所有选取 至少扣掉个负数吧 也就是说这样的情况下上面的解答是正确的
可是假设全是正整数 那么就须要扣去一部分 那么扣去哪部分呢 当然是扣去最小子序列和了 事实上说更直白点 就是最小的那个正整数
这样就能够愉快的AC了。。
。
代码例如以下:
#include <iostream>
#include <cmath>
#include <vector>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <queue>
#include <stack>
#include <list>
#include <algorithm>
#include <map>
#include <set>
#define LL long long
#define Pr pair<int,int>
#define fread() freopen("in.in","r",stdin)
#define fwrite() freopen("out.out","w",stdout) using namespace std;
const int INF = 0x3f3f3f3f;
const int msz = 10000;
const int mod = 1e9+7;
const double eps = 1e-8; struct Tree
{
int cnt,sum,lmax,rmax,mx,lmin,rmin,mn;
}; Tree tr[400400];
int n; void init(int root,int l,int r)
{
if(l == r)
{
scanf("%d",&tr[root].sum);
tr[root].cnt = (tr[root].sum < 0);
tr[root].lmin = tr[root].rmin = tr[root].mn = tr[root].lmax = tr[root].rmax = tr[root].mx = tr[root].sum;
return;
}
int mid = (l+r)>>1;
init(root<<1,l,mid);
init(root<<1|1,mid+1,r);
tr[root].sum = tr[root<<1].sum+tr[root<<1|1].sum; tr[root].lmax = max(tr[root<<1].lmax,tr[root<<1].sum+tr[root<<1|1].lmax);
tr[root].rmax = max(tr[root<<1|1].rmax,tr[root<<1|1].sum+tr[root<<1].rmax);
tr[root].mx = max(max(tr[root<<1].mx,tr[root<<1|1].mx),tr[root<<1].rmax + tr[root<<1|1].lmax); tr[root].lmin = min(tr[root<<1].lmin,tr[root<<1].sum+tr[root<<1|1].lmin);
tr[root].rmin = min(tr[root<<1|1].rmin,tr[root<<1|1].sum+tr[root<<1].rmin);
tr[root].mn = min(min(tr[root<<1].mn,tr[root<<1|1].mn),tr[root<<1].rmin + tr[root<<1|1].lmin);
tr[root].cnt = tr[root<<1].cnt+tr[root<<1|1].cnt;
} void Change(int root,int l,int r,int pos,int x)
{
if(l == r)
{
tr[root].lmin = tr[root].rmin = tr[root].mn = tr[root].lmax = tr[root].rmax = tr[root].mx = tr[root].sum = x;
tr[root].cnt = (x < 0);
return;
}
int mid = (l+r)>>1; if(mid >= pos) Change(root<<1,l,mid,pos,x);
else Change(root<<1|1,mid+1,r,pos,x); tr[root].sum = tr[root<<1].sum+tr[root<<1|1].sum; tr[root].lmax = max(tr[root<<1].lmax,tr[root<<1].sum+tr[root<<1|1].lmax);
tr[root].rmax = max(tr[root<<1|1].rmax,tr[root<<1|1].sum+tr[root<<1].rmax);
tr[root].mx = max(max(tr[root<<1].mx,tr[root<<1|1].mx),tr[root<<1].rmax + tr[root<<1|1].lmax); tr[root].lmin = min(tr[root<<1].lmin,tr[root<<1].sum+tr[root<<1|1].lmin);
tr[root].rmin = min(tr[root<<1|1].rmin,tr[root<<1|1].sum+tr[root<<1].rmin);
tr[root].mn = min(min(tr[root<<1].mn,tr[root<<1|1].mn),tr[root<<1].rmin + tr[root<<1|1].lmin);
tr[root].cnt = tr[root<<1].cnt+tr[root<<1|1].cnt;
} int main()
{
//fread();
//fwrite();
int m,pos,x; while(~scanf("%d",&n))
{
init(1,1,n);
// printf("%d\n",tr[1].mx); scanf("%d",&m);
while(m--)
{
scanf("%d%d",&pos,&x);
Change(1,1,n,pos,x); if(!tr[0].cnt)
printf("%d\n",tr[1].sum-tr[1].mn);
else printf("%d\n",max(tr[1].mx,tr[1].sum-tr[1].mn));
} } return 0;
}
【POJ 2750】 Potted Flower(线段树套dp)的更多相关文章
- POJ 2750 Potted Flower(线段树+dp)
题目链接 虽然是看的别的人思路,但是做出来还是挺高兴的. 首先求环上最大字段和,而且不能是含有全部元素.本来我的想法是n个元素变为2*n个元素那样做的,这样并不好弄.实际可以求出最小值,总和-最小,就 ...
- POJ.2750.Potted Flower(线段树 最大环状子段和)
题目链接 /* 13904K 532ms 最大 环状 子段和有两种情况,比如对于a1,a2,a3,a4,a5 一是两个端点都取,如a4,a5,a1,a2,那就是所有数的和减去不选的,即可以计算总和减最 ...
- POJ 2750 Potted Flower (线段树区间合并)
开始懵逼找不到解法,看了网上大牛们的题解才发现是区间合并... 给你n个数形成一个数列环,然后每次进行一个点的修改,并输出这个数列的最大区间和(注意是环,并且区间最大只有n-1个数) 其实只需要维护 ...
- POJ 2376 Cleaning Shifts (线段树优化DP)
题目大意:给你很多条线段,开头结尾是$[l,r]$,让你覆盖整个区间$[1,T]$,求最少的线段数 题目传送门 线段树优化$DP$裸题.. 先去掉所有能被其他线段包含的线段,这种线段一定不在最优解里 ...
- POJ 2750 Potted Flower(线段树的区间合并)
点我看题目链接 题意 : 很多花盆组成的圆圈,每个花盆都有一个值,给你两个数a,b代表a位置原来的数换成b,然后让你从圈里找出连续的各花盆之和,要求最大的. 思路 :这个题比较那啥,差不多可以用DP的 ...
- (简单) POJ 2750 Potted Flower,环+线段树。
Description The little cat takes over the management of a new park. There is a large circular statue ...
- POJ 2750 Potted Flower
Potted Flower Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 3872 Accepted: 1446 Des ...
- poj 1769 Minimizing maximizer 线段树维护dp
题目链接 给出m个区间, 按区间给出的顺序, 求出覆盖$ [1, n] $ 至少需要多少个区间. 如果先给出[10, 20], 在给出[1, 10], 那么相当于[10, 20]这一段没有被覆盖. 令 ...
- Potted Flower(线段树+dp)
http://poj.org/problem?id=2750 题意:在一个圈中取若干个相邻的数,求他们的最大序列和.不能够同时取所有的数. 看了一篇解题报告写的很详细..http://blog.csd ...
随机推荐
- Python3 定时访问网页
本系列文章由 @YhL_Leo 出品,转载请注明出处. 文章链接: http://blog.csdn.net/yhl_leo/article/details/50358695 如果我有一组网站,想要定 ...
- HDU 4329 Contest 3
果然换个编译器就过了.总的来说,不难,不过就是处理一些空格.学习了一个新的类 istringstream可以按空格划分.然后,那条式子要理解. 式子的意义是: 找到一个串,该串在query中是第几个找 ...
- java文件对照工具
今天想比較一下两个java文件.这两个文件是本地的. 就在网上下载了一个对照工具(破解版)认为挺好用的对于不同的地方有高亮显示. 就给大家分享一下.软件名叫:beyond compare 软件下载地址 ...
- [React] Understanding setState in componentDidMount to Measure Elements Without Transient UI State
In this lesson we'll explore using setState to synchronously update in componentDidMount. This allow ...
- HTTP Status 500 - Request processing failed; nested exception is java.lang.NullPointerException
HTTP Status 500 - Request processing failed; nested exception is java.lang.NullPointerException type ...
- 使用ViewPager实现广告滑动效果
效果图: watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvSk1DNjAx/font/5a6L5L2T/fontsize/400/ ...
- 打印全排列和stl::next_permutation
打印全排列是个有点挑战的编程问题.STL提供了stl::next_permutation完美的攻克了这个问题. 可是,假设不看stl::next_permutation,尝试自己解决,怎么做? 非常自 ...
- 继承QWidget的派生类控件不能设置QSS问题解决(使用style()->drawPrimitive(QStyle::PE_Widget,也就是画一个最简单最原始的QWidget,不要牵扯其它这么多东西)
自定义控件时基类用了QWidget,发现qss设置不起作用,需要重载其paintEvent函数即可: 如下代码: void CCustomWidget::paintEvent(QPaintEvent* ...
- springMVC接受对象实体并且对象实体里面又有对象集合方式
springMVC接受对象实体并且对象实体里面又有对象集合方式: Ajax: function add(){ var orders = [ { orderNo : "H222255" ...
- 优动漫PAINT简简单单绘画绣球花
本文分享使用优动漫PAINT简简单单绘画绣球花教程: 相关资讯还可以关注http://www.dongmansoft.com 最后告诉你绣球花的花语,还是很和谐美好的呢! 绣球花没有茉莉花的芳香四溢, ...