思路:

n^2枚举(必须要n^2枚举啊)+拆点

特此嘲讽网上诸多垃圾题解,你们许多都是错的 —yyh

//By SiriusRen
#include <queue>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
#define N 5555
int n,m,xx,yy,inf=0x3fffff,ans,ed=105;
struct Node{int x,y;}point[N];
struct Dinic{
int first[107],next[N],v[N],w[N],tot,vis[107];
void solve(int x,int y){
memset(first,-1,sizeof(first)),tot=0;
add(0,x,inf),add(x,x+n,inf),add(y,y+n,inf),add(y+n,105,inf);
for(int i=1;i<=n;i++)add(i,i+n,1);
for(int i=1;i<=m;i++)add(point[i].x+n,point[i].y,inf),add(point[i].y+n,point[i].x,inf);
ans=min(ans,x=flow());
}
void add(int x,int y,int z){Add(x,y,z),Add(y,x,0);}
void Add(int x,int y,int z){w[tot]=z,v[tot]=y,next[tot]=first[x],first[x]=tot++;}
bool tell(){
memset(vis,-1,sizeof(vis)),vis[0]=0;
queue<int>q;q.push(0);
while(!q.empty()){
int t=q.front();q.pop();
for(int i=first[t];~i;i=next[i])
if(vis[v[i]]==-1&&w[i])
vis[v[i]]=vis[t]+1,q.push(v[i]);
}
return vis[ed]!=-1;
}
int zeng(int x,int y){
if(x==ed)return y;
int r=0;
for(int i=first[x];~i&&y>r;i=next[i])
if(vis[v[i]]==vis[x]+1&&w[i]){
int t=zeng(v[i],min(y-r,w[i]));
w[i]-=t,w[i^1]+=t,r+=t;
}
if(!r)vis[x]=-1;
return r;
}
int flow(){
int jy=0,tmp;
while(tell())while(tmp=zeng(0,inf))jy+=tmp;
return jy;
}
}dinic;
int main(){
while(~scanf("%d%d",&n,&m)){
ans=inf;
for(int i=1;i<=m;i++){
scanf(" (%d,%d)",&point[i].x,&point[i].y);
point[i].x++,point[i].y++;
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(i!=j)dinic.solve(i,j);
if(ans==inf)printf("%d\n",n);
else printf("%d\n",ans);
}
}

POJ 1966 求无向图点连通度的更多相关文章

  1. poj 1966(求点连通度,边连通度的一类方法)

    题目链接:http://poj.org/problem?id=1966 思路:从网上找了一下大牛对于这类问题的总结:图的连通度问题是指:在图中删去部分元素(点或边),使得图中指定的两个点s和t不连通  ...

  2. poj 3895(求无向图的最大简单环)

    题目链接:http://poj.org/problem?id=3895 思想很简单,就是dfs,并且用一个数组记录到该节点所走过的长度,然后如果遇到已经走过的,就说明存在环了, 更新一下ans. /* ...

  3. POJ 1144 Network(无向图连通分量求割点)

    题目地址:id=1144">POJ 1144 求割点.推断一个点是否是割点有两种推断情况: 假设u为割点,当且仅当满足以下的1条 1.假设u为树根,那么u必须有多于1棵子树 2.假设u ...

  4. POJ 1966

    求的是无向图的点连通度.开始便想到网络流,既然选的是点,当然就要拆点加边了.但无论如何也不敢往枚举源汇点的方向想,因为网络流复习度很高.看看网上大牛的,都是枚举,再看数据,原来N才50个点,枚举无压力 ...

  5. FZU 2090 旅行社的烦恼 floyd 求无向图最小环

    题目链接:旅行社的烦恼 题意是求无向图的最小环,如果有的话,输出个数,并且输出权值. 刚刚补了一发floyd 动态规划原理,用了滑动数组的思想.所以,这个题就是floyd思想的变形.在k从1到n的过程 ...

  6. Tarjan求无向图割点、桥详解

    tarjan算法--求无向图的割点和桥   一.基本概念 1.桥:是存在于无向图中的这样的一条边,如果去掉这一条边,那么整张无向图会分为两部分,这样的一条边称为桥无向连通图中,如果删除某边后,图变成不 ...

  7. tarkjan求无向图割点模板

    #include<bits/stdc++.h> using namespace std; typedef long long ll; int n,m; ; ; struct node { ...

  8. [Tarjan系列] Tarjan算法求无向图的双连通分量

    这篇介绍如何用Tarjan算法求Double Connected Component,即双连通分量. 双联通分量包括点双连通分量v-DCC和边连通分量e-DCC. 若一张无向连通图不存在割点,则称它为 ...

  9. [Tarjan系列] Tarjan算法求无向图的桥和割点

    RobertTarjan真的是一个传说级的大人物. 他发明的LCT,SplayTree这些数据结构真的给我带来了诸多便利,各种动态图论题都可以用LCT解决. 而且,Tarjan并不只发明了LCT,他对 ...

随机推荐

  1. linux 下的小知识

    Linux中有7种启动级别 运行级别0:系统停机状态,系统默认运行级别不能设为0,否则不能正常启动运行级别1:单用户工作状态,root权限,用于系统维护,禁止远程登陆运行级别2:多用户状态(没有NFS ...

  2. rdesktop 脚本

    [root@Eren liwm]# cat rdesktop.sh #!/bin/bash -rdesktop -u user  192.168.122.10 -r sound:local -g 10 ...

  3. python基础7(函数 Ⅱ)

    1.python代码运行遇到函数时 从python解释器开始执行之后,就在内存中开辟了一个空间 每当遇到一个变量的时候,就把变量名和值之间的对应关系记录下来. 但是当遇到函数定义的时候解释器只是象征性 ...

  4. ASP.NET-文件上传代码

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 3 ...

  5. video : Write and Submit your first Linux kernel Patch

    http://v.youku.com/v_show/id_XNDMwNzc3MTI4.html After working with Linux (mostly as an advanced user ...

  6. C++ 何时使用动态分配(即使用newkeyword)?何时使用指针?

    动态分配 在你的问题里.你用了两种方式创建对象.这两种方式基本的不同在于对象的存储时间. 当运行Object myObject;这句代码时.它作为自己主动变量被创建,这意味着当对象出了作用域时也会自己 ...

  7. 【转】dig详解

    [root@localhost ~]# dig www.a.com ; <<>> DiG 9.2.4 <<>> www.a.com ;; global ...

  8. [BZOJ4289] [PA2012] Tax 解题报告 (最短路+差分建图)

    题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4289 4289: PA2012 Tax Time Limit: 10 Sec  Memo ...

  9. CURRENMONTH TAG in Automation Framework

    /** * @param input * <CURRENTMONTH><CURRENTMONTH+1> * @return Month "MM" */ pr ...

  10. LIMIT语句解析及本章简单回顾(二十九)

    一.LIMIT 限制查询结果返回的数量 [LIMIT {[offset,] row_count | row_count OFFSET offset}] select * from user; 除了可以 ...