[POI2015]Pustynia

题目大意:

给定一个长度为\(n(n\le10^5)\)的正整数序列\(a\),每个数都在\(1\)到\(10^9\)范围内,告诉你其中\(s\)个数,并给出\(m\)条信息,每条信息包含三个数\(l,r,k\)以及接下来\(k(\sum k\le3\times10^5)\)个正整数,表示\(a_{l\sim r}\)里这\(k\)个数中的任意一个都严格大于剩下\(r-l+1-k\)个数中的任意一个数。

请任意构造出一组满足条件的方案,或者判断无解。

思路:

考虑差分约束,若一个点\(u\)大于另一个点\(v\),则连一条从\(v\)到\(u\)的新边。若存在环则说明无解,否则在DAG上DP即可。

但是直接暴力连边时空复杂度都不对,因此我们可以考虑拆点,将\(r-l+1-k\)个点全部连向一个新的点\(t\),边权为\(0\),在从\(t\)连向\(k\)个新点,边权为\(1\)。这样虽然比前面的暴力做法优,但还是不能通过这道题目。

由于我们要连的\(r-l+1-k\)个点中,有许多点都是相邻的,因此我们可以将这些点拆成至多\(k+1\)个区间,用线段树优化连边即可。

源代码:

#include<queue>
#include<cstdio>
#include<cctype>
#include<vector>
#include<algorithm>
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
const int N=1e5+1,lim=1e9,V=5e5+1;
struct Edge {
int to,w;
};
std::vector<Edge> e[V];
bool vis[V];
int ind[V],d[V],dis[V],tot;
inline void add_edge(const int &u,const int &v,const int &w) {
e[u].push_back((Edge){v,w});
ind[v]++;
}
class SegmentTree {
#define _left <<1
#define _right <<1|1
#define mid ((b+e)>>1)
private:
int id[V<<2];
public:
void build(const int &p,const int &b,const int &e) {
if(b==e) {
id[p]=b;
return;
}
id[p]=++tot;
build(p _left,b,mid);
build(p _right,mid+1,e);
add_edge(id[p _left],id[p],0);
add_edge(id[p _right],id[p],0);
}
void link(const int &p,const int &b,const int &e,const int &l,const int &r,const int &x) {
if(b==l&&e==r) {
add_edge(id[p],x,0);
return;
}
if(l<=mid) link(p _left,b,mid,l,std::min(mid,r),x);
if(r>mid) link(p _right,mid+1,e,std::max(mid+1,l),r,x);
}
#undef _left
#undef _right
#undef mid
};
SegmentTree t;
inline void kahn() {
static std::queue<int> q;
for(register int i=1;i<=tot;i++) {
if(!ind[i]) {
dis[i]=d[i]?:1;
q.push(i);
}
}
while(!q.empty()) {
const int &x=q.front();
vis[x]=true;
for(unsigned i=0;i<e[x].size();i++) {
const int &y=e[x][i].to,&w=e[x][i].w;
if(d[y]) {
if(d[y]<dis[x]+w) throw 0;
dis[y]=d[y];
} else {
dis[y]=std::max(dis[y],dis[x]+w);
if(dis[y]>lim) throw 0;
}
if(!--ind[y]) q.push(y);
}
q.pop();
}
for(register int i=1;i<=tot;i++) {
if(!vis[i]) throw 0;
}
}
int main() {
const int n=tot=getint(),s=getint(),m=getint();
t.build(1,1,n);
for(register int i=0;i<s;i++) {
const int p=getint();
dis[p]=d[p]=getint();
}
for(register int i=0;i<m;i++) {
const int l=getint(),r=getint(),k=getint();
tot++;
int last=l;
for(register int i=0;i<k;i++) {
const int x=getint();
add_edge(tot,x,1);
if(x-1>=last) t.link(1,1,n,last,x-1,tot);
last=x+1;
}
if(r>=last) t.link(1,1,n,last,r,tot);
}
try {
kahn();
} catch(...) {
puts("NIE");
return 0;
}
puts("TAK");
for(register int i=1;i<=n;i++) {
printf("%d%c",dis[i]," \n"[i==n]);
}
return 0;
}

[POI2015]Pustynia的更多相关文章

  1. 【BZOJ4383】[POI2015]Pustynia 线段树优化建图

    [BZOJ4383][POI2015]Pustynia Description 给定一个长度为n的正整数序列a,每个数都在1到10^9范围内,告诉你其中s个数,并给出m条信息,每条信息包含三个数l,r ...

  2. 洛谷P3588 - [POI2015]Pustynia

    Portal Description 给定一个长度为\(n(n\leq10^5)\)的正整数序列\(\{a_n\}\),每个数都在\([1,10^9]\)范围内,告诉你其中\(s\)个数,并给出\(m ...

  3. BZOJ4383 : [POI2015]Pustynia

    设$a$到$b$的边权为$c$的有向边的含义为$b\geq a+c$,则可以根据题意构造出一张有向图. 设$f[x]$为$x$点可行的最小值,$a[x]$为$x$位置已知的值,则$f[x]=\max( ...

  4. bzoj 4383: [POI2015]Pustynia

    复习了一下线段树优化建图的姿势,在线段树上连边跑拓扑排序 这题竟然卡vector……丧病 #include <bits/stdc++.h> #define N 1810000 using ...

  5. 【bzoj4383】[POI2015]Pustynia 线段树优化建图+差分约束系统+拓扑排序

    题目描述 给定一个长度为n的正整数序列a,每个数都在1到10^9范围内,告诉你其中s个数,并给出m条信息,每条信息包含三个数l,r,k以及接下来k个正整数,表示a[l],a[l+1],...,a[r- ...

  6. 【BZOJ4383】[POI2015]pustynia

    题意: 建议Alt+F4百度一下 题解: 差分约束+线段树优化建图,直接按照拓扑序跑就行了 代码: #include<iostream> #include<cstring> # ...

  7. BZOJ4383 [POI2015]Pustynia[线段树优化建边+拓扑排序+差分约束]

    收获挺大的一道题. 这里的限制大小可以做差分约束,从$y\to x$连$1$,表示$y\le x-1$即$y<x$,然后跑最长路求解. 但是,如果这样每次$k+1$个小区间每个点都向$k$个断点 ...

  8. bzoj4383 [POI2015]Pustynia 拓扑排序+差分约束+线段树优化建图

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4383 题解 暴力的做法显然是把所有的条件拆分以后暴力建一条有向边表示小于关系. 因为不存在零环 ...

  9. @bzoj - 4378@ [POI2015] Pustynia

    目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一个长度为 n 的正整数序列 a,每个数都在 1 到 10^ ...

随机推荐

  1. UNIX网络编程 第3章 套接字编程简介

    套接字结构类型和相关的格式转换函数

  2. Java NIO 之 Channel(通道)

    历史回顾: Java NIO 概览 Java NIO 之 Buffer(缓冲区) 其他高赞文章: 面试中关于Redis的问题看这篇就够了 一文轻松搞懂redis集群原理及搭建与使用 一 Channel ...

  3. mybatis查询参数为0时无法识别问题

    最近在工作中遇到一个mybatis参数问题,主要是列表查询按照状态进行过滤,其中已完成状态值是0,被退回是1.如图所示 , 然后Mapper里面是和平常一样的写法<if test="s ...

  4. poj1095

    题意:给出n,要求输出第n个二叉树,二叉树编号规则如下图所示: 分析:g[i]表示有i个节点的二叉树,有多少种.f[i][j]表示有i个节点,且左子树有j个节点的树有多少种. sumg[i]表示g数组 ...

  5. VirtualBox上安装CentOS-7(Minimal)

    Windows 10家庭中文版,VirtualBox 5.2.12,CentOS 7(Minimal版), 因为听到大家在谈论CentOS,阿里云上也有CentOS,CentOS还是Red Hat出品 ...

  6. Jmeter运行结果unicode编码乱码问题

    一.web页面乱码 比如访问百度返回页面显示乱码,如下会有问号 如果想让他显示中文可以按以下操作: 1.打开jmter配置文件 bin/jmeter.properties 2.修改配置文件,查找“sa ...

  7. 耗时任务DefaultEventExecutorGroup 定时任务

    一. 耗时任务 static final EventExecutorGroup group = new DefaultEventExecutorGroup(16); // Tell the pipel ...

  8. vue-cli脚手架安装

    -1.安装淘宝镜像 $ alias cnpm="npm --registry=https://registry.npm.taobao.org \ --cache=$HOME/.npm/.ca ...

  9. abp zero 4.3 发布

    Demo URL: http://abpzerodemo.demo.aspnetzero.com Username: systemPassword: 123456 需要源码,请加QQ:3833-255 ...

  10. Web前端开发最佳实践(11):使用更严格的JavaScript编码方式,提高代码质量

    前言 JavaScript语言由于其固有的灵活性,所以导致开发者可以写出很多诡异的代码,甚至一些较为正常的特性,如类型隐式转换.this的指代等等,也会让刚接触此语言的开发者头大不已.尤其是那些熟知其 ...