近日整理书稿,在整理至Strling公式处时,发现当时数学老师所讲的是形式比较精细的一种:

Strling公式:\(n!=\sqrt{2\pi n}\left(\dfrac{n}{\mathrm{e}}\right)^n\mathrm{e}^{\frac{\theta_n}{12n}},\)其中\(\theta_n\in\left(\dfrac{n}{n+1},1\right)\)是一个与\(n\)有关的变量。

这相当于是利用Euler-Maclaurin求和公式所能得到的最精确形式的Strling公式之第一项。此处将这一种形式的Strling公式证明简要叙述一下,下面所用的证明方法是常见的一种证明模式。

引理1:\(\dfrac{1}{3}t^2<\dfrac{1}{2t}\ln\dfrac{1+t}{1-t}-1<\dfrac{1}{3}\cdot\dfrac{t^2}{1-t^2}.\quad(0<|t|<1)\)

证明:令\(f(t)=\ln\dfrac{1+t}{1-t}-2t-\dfrac23t^3\),则由
\[f'(t)=\dfrac1{1+t}-\dfrac1{1-t}-2-2t^3=\dfrac{2t^4}{1-t^2}>0\quad(0<|t|<1)\]
知\(f(t)\)单增,而又有\(f(t)=0\),故可见\(f(t)>0\)在\(0<|t|<1\)时恒成立,而这正是要证的不等式的左半部分。同样的道理,设\(g(t)=\ln\dfrac{1+t}{1-t}-2t-\dfrac23\cdot\dfrac{t^3}{1-t^2}\),可验证得到
\[g'(t)=\dfrac1{1+t}-\dfrac1{1-t}-2-\dfrac23\cdot\dfrac{3t^2(1-t^2)-t^3\cdot(-2t)}{(1-t^2)^2}=-\dfrac43\dfrac{t^4}{(1-t^2)^2}<0\quad(0<|t|<1)\]
从而\(g(t)\)单减,再由\(g(0)=0\)得到\(g(t)<0\)在\(0<|t|<1\)时恒成立,而这正是不等式的右半部分。综上就证明了题目所给不等式的正确性。

引理2:令\(\alpha_n=\ln(n!)+n-\left(n+\dfrac12\right)\ln n\ (n\geq1)\),证明
\[\dfrac1{12}\left(\dfrac1{n+1}-\dfrac1{n+2}\right)<\alpha_n-\alpha_{n+1}<\dfrac1{12}\left(\dfrac1n-\dfrac1{n+1}\right).\]

证明:可以算出
\[\alpha_n-\alpha_{n+1}=\left(n+\dfrac12\right)\ln\dfrac{n+1}n-1=\left.\left(\dfrac1{2x}\ln\dfrac{1+x}{1-x}-1\right)\right|_{x=\frac1{2n+1}}\]
这时应用引理1中的结果就有
\[\alpha_n-\alpha_{n+1}>\left.{\dfrac{x^2}3}\right|_{x=\frac1{2n+1}}=\dfrac12\left(\dfrac1{2n+1}\right)^2=\dfrac13\dfrac1{4n^2+4n+1}>\dfrac13\dfrac1{4(n^2+3n+2)}=\dfrac1{12}\left(\dfrac1{n+1}-\dfrac1{n+2}\right).\]
\[\alpha_n-\alpha_{n+1}<\left.{\dfrac13\dfrac{x^2}{1-x^2}}\right|_{x=\frac1{2n+1}}=\dfrac13\dfrac1{(2n+1)^2-1}=\dfrac1{12}\left(\dfrac1n-\dfrac1{n+1}\right)\]
由此就证明了题目所给的不等式。

引理3:设\(a_n=\alpha_n-\dfrac1{12n}\),\(b_n=\alpha_n-\dfrac1{12(n+1)}\),证明数列\(\{a_n\},\{b_n\}\)收敛且极限值相等。

证明:利用引理2的结果就有
\[\begin{cases}
a_n-a_{n+1}=(\alpha_n-\alpha_{n+1})-\dfrac1{12}\left(\dfrac1n-\dfrac1{n+1}\right)<0\\
b_n-b_{n+1}=(\alpha_n-\alpha_{n+1})-\dfrac1{12}\left(\dfrac1{n+1}-\dfrac1{n+2}\right)>0
\end{cases}\]
由此可见\(\{a_n\}\)是严格单增数列而\(\{b_n\}\)是严格单减数列,并且总是有\(a_n<b_n\),从而它们都有界。故由单调有界定理,它们都是收敛数列。此外,还容易验证\(\lim\limits_{n\to\infty}(b_n-a_n)=0\),因此它们的极限都相等。

最后,来证明文首所给的Strling公式。

Strling公式:\(n!=\sqrt{2\pi n}\left(\dfrac{n}{\mathrm{e}}\right)^n\mathrm{e}^{\frac{\theta_n}{12n}},\)其中\(\theta_n\in\left(\dfrac{n}{n+1},1\right)\)是一个与\(n\)有关的变量。

证明:设引理3中的两数列\(\{a_n\},\{b_n\}\)之极限值为\(\alpha\),并令
\[\begin{cases}
A_n=\mathrm{e}^{a_n}=\dfrac{n!}{\sqrt n}\left(\dfrac{\mathrm{e}}n\right)^n\mathrm{e}^{-\frac1{12n}}\\
B_n=\mathrm{e}^{b_n}=\dfrac{n!}{\sqrt n}\left(\dfrac{\mathrm{e}}n\right)^n\mathrm{e}^{-\frac1{12(n+1)}}
\end{cases}\]
那么就有\(A_n<\mathrm{e}^\alpha<B_n\)成立。记\(A=\mathrm{e}^\alpha\),那么就有\(A_n<A<B_n\),为此应该存在一个与\(n\)相关的\(\theta_n\in\left(\dfrac{n}{n+1},1\right)\)使得
\[n!=A\sqrt{n!}\left(\dfrac{n}{\mathrm{e}}\right)^n\mathrm{e}^{\frac{\theta_n}{12n}}.\]

到这里为止,我们只要将常数\(A\)确定下来就够了。为此,考虑将Wallis公式变形一下:
\[\dfrac\pi2=\lim\limits_{n\to\infty}\left(\dfrac{(2n)!!}{(2n-1)!!}\right)^2\dfrac1{2n+1}=\lim\limits_{n\to\infty}\left(\dfrac{2^{2n}(n!)^2}{(2n)!}\right)^2\dfrac1{2n+1}\]
然后代入\(n!=A\sqrt{n}\left(\dfrac{n}{\mathrm{e}}\right)^n\mathrm{e}^{\frac{\theta_n}{12n}}\)就有:
\[\lim\limits_{n\to\infty}\left[\dfrac{\left(2^{2n}\cdot A\sqrt n\left(\dfrac{n}{\mathrm{e}}\right)^n\mathrm{e}^{\frac{\theta_n}{12n}}\right)^2}{A\sqrt{2n}\left(\dfrac{2n}{\mathrm{e}}\right)^2n\cdot\mathrm{e}^{\frac{\theta_{2n}}{24n}}}\right]^2\dfrac1{2n+1}=\dfrac\pi2.\]
也即\(\lim\limits_{n\to\infty}\left(\sqrt{\dfrac n2}A\mathrm{e}^{\frac{\theta_n}{12n}}/\mathrm{e}^{\frac{\theta_{2n}}{24n}}\right)^{2n}\cdot\dfrac1{2n+1}=\dfrac\pi2.\)展开平方,我们得到
\[\lim\limits_{n\to\infty}\dfrac{nA^2}{2}\dfrac{\mathrm{e}^{\frac{\theta_n}{6n}}}{\mathrm{e}^{\frac{\theta_{2n}}{12n}}}\cdot\dfrac1{2n+1}=\dfrac{A^2}4=\dfrac\pi2\]
故解出常数\(A=\sqrt{2\pi}\)。将其带回之前的估计式中,我们就最终得到了
\[n!=\sqrt{2\pi n}\left(\dfrac{n}{\mathrm{e}}\right)^n\mathrm{e}^{\frac{\theta_n}{12n}}\]
其中\(\theta_n\in(\dfrac n{n+1},1)\)与\(n\)有关。

本篇博客的源码及pdf文件下载:https://github.com/xjtu-blacksmith/cnblogs-source/tree/master/blog-stirling.

一个形式较精细的Strling公式的证明的更多相关文章

  1. Aurora — 一个在 MSOffice 内输入 LaTeX 公式的很好用插件

    from http://blog.csdn.net/GarfieldEr007/article/details/51452986 工具名称:Aurora2x  (下载) 压缩包内有详细的安装说明. 刚 ...

  2. 给大家补充一个结构体的例子:下面TwoNumber就是一个形式上的结构体

    给大家补充一个结构体的例子:下面TwoNumber就是一个形式上的结构体: class TwoNumber {     int num1;     int num2; } public class T ...

  3. Cauchy-Binet公式的证明 及 对Denton et al. (2019)的个人注(1)

    ------------恢复内容开始------------ 据新闻报道数学天才陶哲轩和3个物理学家研究出一个只用特征值就可以计算矩阵特征向量的公式, 我感觉很有趣, 这应该能够应用在很多领域中, 所 ...

  4. 关于后缀间$LCP$的一些公式的证明

    目录 关于\(LCP\)有如下两个公式: \(LCP~Lemma\) 的证明: \(LCP~Theorem\) 的证明: 关于\(LCP\)有如下两个公式: \(LCP~Lemma:\) 对任意 \( ...

  5. 公式编辑器MathType基本使用方法总结----应付本科毕业论文完全没问题啦^_^

    本人计算数学专业毕业,写毕业论文和外文翻译的时候会遇到大量公式需要编辑,而且学校一般都要求用word.但是Word自带的公式编辑器只支持一种字体,当公式中涉及到特殊字体就不太方便了.如果用Latex来 ...

  6. office2007/2010/2013输入公式的正确方式

    博客中的文章均为 meelo 原创,请务必以链接形式注明本文地址 理工科的学生,写报告.写论文那面需要输入公式,过去大家常用的公式编辑器是mathtype,虽然功能强大,但输入极为不方便,输入个指数. ...

  7. 个人永久性免费-Excel催化剂功能第61波-快速锁定解锁单元格及显示隐藏公式

    Excel的所有功能都是需求导向的,正因为有客户在企业管理的过程中,有这样的需求出现了,然后相应的Excel就出现了相应的功能来辅助管理,学习Excel的功能,其实真的可以学习到先进企业的许多的管理思 ...

  8. 一文掌握在Word中快速编写公式

    在使用Word编写文章时,总会遇到书写数学公式的情况.使用Word的公式输入工具需要频繁地使用鼠标,因而编写公式会显得繁琐麻烦,那么有什么办法可以优雅地在Word中书写公式呢?其实Word早在Word ...

  9. latex:公式环境

    1.单行公式环境 equation 单行公式环境equation可将一个公式,不管多长都可排版为一行,并给出一个序号.而由系统提供的displaymath环境等效于公式宏包提供的equation*环境 ...

随机推荐

  1. 高并发Web

    hadoop适合处理分布式集群系统,本身是支持高速并发海量数据的写入和读取的.解决大量用户并发访问的方案有很多,给你个千万pv的参考方案:1)架构中直接引入软件名称的模块,是个人推荐使用的,如Hapr ...

  2. c3p0----获取不到链接

    最近别人的项目,因为经常获取不到链接出错,我好奇也就跟着摆弄了一把,使用的插件是:c3p0+spring+ibatiS,当然事务管理部分也配置上了配置如下: <bean id="dat ...

  3. C#中的split的基本用法

    split的使用: 1.使用char()字符分隔:根据单个的char()类型的进行分隔 代码如下: string str="e2kdk2fjod2fiksf21"; ');//因为 ...

  4. JVM伪共享

    CPU缓存中的cache line缓存行是缓存的最小单位,同一个时刻内只允许一个cpu内核进行操作.一般,缓存行的大小为64字节,这样的大小可以存放多个java对象的对象头.因此,当两个不同的线程同时 ...

  5. jqury的ajax

    前端代码: <%@ page language="java" contentType="text/html; charset=UTF-8" pageEnc ...

  6. 《Python绝技:运用Python成为顶级黑客》 用Python刺探网络

    1.使用Mechanize库上网: Mechanize库的Browser类允许我们对浏览器中的任何内容进行操作. #!/usr/bin/python #coding=utf-8 import mech ...

  7. PHPhotos

    PHPhotoLibrary: @abstract A PHPhotoLibrary provides access to the metadata and image data for the ph ...

  8. SVN版本服务器的搭建和远程控制

    版本服务器是用SVN server(这个东西是放到版本机服务器上的)  版本管理工具是用小乌龟(tortoiseSVN,这个是在各个机器上使用) 1,昨天下载了SVN server 按照网上教程搭建好 ...

  9. Python 去除列表中重复的元素

    Python 去除列表中重复的元素 来自比较容易记忆的是用内置的set l1 = ['b','c','d','b','c','a','a'] l2 = list(set(l1)) print l2 还 ...

  10. 页面按钮埋点+跟踪location.search

    <a href="javascript: void(0)" onclick="setUrl('https://baoxian.pingan.com/pa18shop ...