近日整理书稿,在整理至Strling公式处时,发现当时数学老师所讲的是形式比较精细的一种:

Strling公式:\(n!=\sqrt{2\pi n}\left(\dfrac{n}{\mathrm{e}}\right)^n\mathrm{e}^{\frac{\theta_n}{12n}},\)其中\(\theta_n\in\left(\dfrac{n}{n+1},1\right)\)是一个与\(n\)有关的变量。

这相当于是利用Euler-Maclaurin求和公式所能得到的最精确形式的Strling公式之第一项。此处将这一种形式的Strling公式证明简要叙述一下,下面所用的证明方法是常见的一种证明模式。

引理1:\(\dfrac{1}{3}t^2<\dfrac{1}{2t}\ln\dfrac{1+t}{1-t}-1<\dfrac{1}{3}\cdot\dfrac{t^2}{1-t^2}.\quad(0<|t|<1)\)

证明:令\(f(t)=\ln\dfrac{1+t}{1-t}-2t-\dfrac23t^3\),则由
\[f'(t)=\dfrac1{1+t}-\dfrac1{1-t}-2-2t^3=\dfrac{2t^4}{1-t^2}>0\quad(0<|t|<1)\]
知\(f(t)\)单增,而又有\(f(t)=0\),故可见\(f(t)>0\)在\(0<|t|<1\)时恒成立,而这正是要证的不等式的左半部分。同样的道理,设\(g(t)=\ln\dfrac{1+t}{1-t}-2t-\dfrac23\cdot\dfrac{t^3}{1-t^2}\),可验证得到
\[g'(t)=\dfrac1{1+t}-\dfrac1{1-t}-2-\dfrac23\cdot\dfrac{3t^2(1-t^2)-t^3\cdot(-2t)}{(1-t^2)^2}=-\dfrac43\dfrac{t^4}{(1-t^2)^2}<0\quad(0<|t|<1)\]
从而\(g(t)\)单减,再由\(g(0)=0\)得到\(g(t)<0\)在\(0<|t|<1\)时恒成立,而这正是不等式的右半部分。综上就证明了题目所给不等式的正确性。

引理2:令\(\alpha_n=\ln(n!)+n-\left(n+\dfrac12\right)\ln n\ (n\geq1)\),证明
\[\dfrac1{12}\left(\dfrac1{n+1}-\dfrac1{n+2}\right)<\alpha_n-\alpha_{n+1}<\dfrac1{12}\left(\dfrac1n-\dfrac1{n+1}\right).\]

证明:可以算出
\[\alpha_n-\alpha_{n+1}=\left(n+\dfrac12\right)\ln\dfrac{n+1}n-1=\left.\left(\dfrac1{2x}\ln\dfrac{1+x}{1-x}-1\right)\right|_{x=\frac1{2n+1}}\]
这时应用引理1中的结果就有
\[\alpha_n-\alpha_{n+1}>\left.{\dfrac{x^2}3}\right|_{x=\frac1{2n+1}}=\dfrac12\left(\dfrac1{2n+1}\right)^2=\dfrac13\dfrac1{4n^2+4n+1}>\dfrac13\dfrac1{4(n^2+3n+2)}=\dfrac1{12}\left(\dfrac1{n+1}-\dfrac1{n+2}\right).\]
\[\alpha_n-\alpha_{n+1}<\left.{\dfrac13\dfrac{x^2}{1-x^2}}\right|_{x=\frac1{2n+1}}=\dfrac13\dfrac1{(2n+1)^2-1}=\dfrac1{12}\left(\dfrac1n-\dfrac1{n+1}\right)\]
由此就证明了题目所给的不等式。

引理3:设\(a_n=\alpha_n-\dfrac1{12n}\),\(b_n=\alpha_n-\dfrac1{12(n+1)}\),证明数列\(\{a_n\},\{b_n\}\)收敛且极限值相等。

证明:利用引理2的结果就有
\[\begin{cases}
a_n-a_{n+1}=(\alpha_n-\alpha_{n+1})-\dfrac1{12}\left(\dfrac1n-\dfrac1{n+1}\right)<0\\
b_n-b_{n+1}=(\alpha_n-\alpha_{n+1})-\dfrac1{12}\left(\dfrac1{n+1}-\dfrac1{n+2}\right)>0
\end{cases}\]
由此可见\(\{a_n\}\)是严格单增数列而\(\{b_n\}\)是严格单减数列,并且总是有\(a_n<b_n\),从而它们都有界。故由单调有界定理,它们都是收敛数列。此外,还容易验证\(\lim\limits_{n\to\infty}(b_n-a_n)=0\),因此它们的极限都相等。

最后,来证明文首所给的Strling公式。

Strling公式:\(n!=\sqrt{2\pi n}\left(\dfrac{n}{\mathrm{e}}\right)^n\mathrm{e}^{\frac{\theta_n}{12n}},\)其中\(\theta_n\in\left(\dfrac{n}{n+1},1\right)\)是一个与\(n\)有关的变量。

证明:设引理3中的两数列\(\{a_n\},\{b_n\}\)之极限值为\(\alpha\),并令
\[\begin{cases}
A_n=\mathrm{e}^{a_n}=\dfrac{n!}{\sqrt n}\left(\dfrac{\mathrm{e}}n\right)^n\mathrm{e}^{-\frac1{12n}}\\
B_n=\mathrm{e}^{b_n}=\dfrac{n!}{\sqrt n}\left(\dfrac{\mathrm{e}}n\right)^n\mathrm{e}^{-\frac1{12(n+1)}}
\end{cases}\]
那么就有\(A_n<\mathrm{e}^\alpha<B_n\)成立。记\(A=\mathrm{e}^\alpha\),那么就有\(A_n<A<B_n\),为此应该存在一个与\(n\)相关的\(\theta_n\in\left(\dfrac{n}{n+1},1\right)\)使得
\[n!=A\sqrt{n!}\left(\dfrac{n}{\mathrm{e}}\right)^n\mathrm{e}^{\frac{\theta_n}{12n}}.\]

到这里为止,我们只要将常数\(A\)确定下来就够了。为此,考虑将Wallis公式变形一下:
\[\dfrac\pi2=\lim\limits_{n\to\infty}\left(\dfrac{(2n)!!}{(2n-1)!!}\right)^2\dfrac1{2n+1}=\lim\limits_{n\to\infty}\left(\dfrac{2^{2n}(n!)^2}{(2n)!}\right)^2\dfrac1{2n+1}\]
然后代入\(n!=A\sqrt{n}\left(\dfrac{n}{\mathrm{e}}\right)^n\mathrm{e}^{\frac{\theta_n}{12n}}\)就有:
\[\lim\limits_{n\to\infty}\left[\dfrac{\left(2^{2n}\cdot A\sqrt n\left(\dfrac{n}{\mathrm{e}}\right)^n\mathrm{e}^{\frac{\theta_n}{12n}}\right)^2}{A\sqrt{2n}\left(\dfrac{2n}{\mathrm{e}}\right)^2n\cdot\mathrm{e}^{\frac{\theta_{2n}}{24n}}}\right]^2\dfrac1{2n+1}=\dfrac\pi2.\]
也即\(\lim\limits_{n\to\infty}\left(\sqrt{\dfrac n2}A\mathrm{e}^{\frac{\theta_n}{12n}}/\mathrm{e}^{\frac{\theta_{2n}}{24n}}\right)^{2n}\cdot\dfrac1{2n+1}=\dfrac\pi2.\)展开平方,我们得到
\[\lim\limits_{n\to\infty}\dfrac{nA^2}{2}\dfrac{\mathrm{e}^{\frac{\theta_n}{6n}}}{\mathrm{e}^{\frac{\theta_{2n}}{12n}}}\cdot\dfrac1{2n+1}=\dfrac{A^2}4=\dfrac\pi2\]
故解出常数\(A=\sqrt{2\pi}\)。将其带回之前的估计式中,我们就最终得到了
\[n!=\sqrt{2\pi n}\left(\dfrac{n}{\mathrm{e}}\right)^n\mathrm{e}^{\frac{\theta_n}{12n}}\]
其中\(\theta_n\in(\dfrac n{n+1},1)\)与\(n\)有关。

本篇博客的源码及pdf文件下载:https://github.com/xjtu-blacksmith/cnblogs-source/tree/master/blog-stirling.

一个形式较精细的Strling公式的证明的更多相关文章

  1. Aurora — 一个在 MSOffice 内输入 LaTeX 公式的很好用插件

    from http://blog.csdn.net/GarfieldEr007/article/details/51452986 工具名称:Aurora2x  (下载) 压缩包内有详细的安装说明. 刚 ...

  2. 给大家补充一个结构体的例子:下面TwoNumber就是一个形式上的结构体

    给大家补充一个结构体的例子:下面TwoNumber就是一个形式上的结构体: class TwoNumber {     int num1;     int num2; } public class T ...

  3. Cauchy-Binet公式的证明 及 对Denton et al. (2019)的个人注(1)

    ------------恢复内容开始------------ 据新闻报道数学天才陶哲轩和3个物理学家研究出一个只用特征值就可以计算矩阵特征向量的公式, 我感觉很有趣, 这应该能够应用在很多领域中, 所 ...

  4. 关于后缀间$LCP$的一些公式的证明

    目录 关于\(LCP\)有如下两个公式: \(LCP~Lemma\) 的证明: \(LCP~Theorem\) 的证明: 关于\(LCP\)有如下两个公式: \(LCP~Lemma:\) 对任意 \( ...

  5. 公式编辑器MathType基本使用方法总结----应付本科毕业论文完全没问题啦^_^

    本人计算数学专业毕业,写毕业论文和外文翻译的时候会遇到大量公式需要编辑,而且学校一般都要求用word.但是Word自带的公式编辑器只支持一种字体,当公式中涉及到特殊字体就不太方便了.如果用Latex来 ...

  6. office2007/2010/2013输入公式的正确方式

    博客中的文章均为 meelo 原创,请务必以链接形式注明本文地址 理工科的学生,写报告.写论文那面需要输入公式,过去大家常用的公式编辑器是mathtype,虽然功能强大,但输入极为不方便,输入个指数. ...

  7. 个人永久性免费-Excel催化剂功能第61波-快速锁定解锁单元格及显示隐藏公式

    Excel的所有功能都是需求导向的,正因为有客户在企业管理的过程中,有这样的需求出现了,然后相应的Excel就出现了相应的功能来辅助管理,学习Excel的功能,其实真的可以学习到先进企业的许多的管理思 ...

  8. 一文掌握在Word中快速编写公式

    在使用Word编写文章时,总会遇到书写数学公式的情况.使用Word的公式输入工具需要频繁地使用鼠标,因而编写公式会显得繁琐麻烦,那么有什么办法可以优雅地在Word中书写公式呢?其实Word早在Word ...

  9. latex:公式环境

    1.单行公式环境 equation 单行公式环境equation可将一个公式,不管多长都可排版为一行,并给出一个序号.而由系统提供的displaymath环境等效于公式宏包提供的equation*环境 ...

随机推荐

  1. java 集合stream操作

    分组 Map<Integer, List<T>> group = List.stream().collect(Collectors.groupingBy(T::getField ...

  2. .NET Core 运行时标识符 (RID) 目录

    RID 是什么? RID 是运行时标识符的缩写. RID 用于标识其中将运行应用程序或资产(即程序集)的目标操作系统. 其外观类似如下:“ubuntu.14.04-x64”.“win7-x64”.“o ...

  3. C#构造方法(函数)

    一.概括 1.通常创建一个对象的方法如图: 通过  Student tom = new Student(); 创建tom对象,这种创建实例的形式被称为构造方法. 简述:用来初始化对象的,为类的成员赋值 ...

  4. Oracle数据库设置Scott登录

    Oracle数据库Scott登录 在安装数据库时,用户登录选项中,Scott用户默认是未解锁的. 用户名填写as sysdba:密码是原来设置的,登录进去,新建SQL窗口,输入命令: alert us ...

  5. 用redis统计大量用户的登陆情况[只判断是否活跃]

    有这样的一个场景需求:有上亿的用户,要统计这批用户的登陆情况,例如一周连续登陆,连续三天是是否登陆,一周活跃天数等用户 存在的挑战 数据如何尽可能用小的空间存储 如何能快速获取指定的数据 如果使用文件 ...

  6. java的数据类型、自动拆装箱、字面量

    java 中的数据类型分为两大类:值类型(基本数据类型)和引用类型(复合数据类型)  值类型分为 1,整数类型(byte,short,int,long) 2,浮点类型(float,double) 3, ...

  7. Zookeeper之Curator(1)客户端基本的创建,删除,更新,查找操作api

    Curator Framework提供了简化使用zookeeper更高级的API接口.它包涵很多优秀的特性,主要包括以下三点: 自动连接管理:自动处理zookeeper的连接和重试存在一些潜在的问题: ...

  8. 中国云运营商横向对比——IaaS服务对标

    前言: 随着互联网行业的快速发展,云服务器的使用越来越普遍.中国的云服务器提供商数量也在增加,市场上有大大小小多家云服务器提供商.然而,为了在众多服务提供商中脱颖而出,国内云服务器运营商商也在不断的利 ...

  9. qwq

    \[{\color{coral}{\texttt{ 邪王真眼是最强的!}}}\] \[{\color{coral}{\texttt{ 爆裂吧现实----}}}\] \[{\color{coral}{\ ...

  10. WebDriverAPI(9)

    操作JavaScript的Alert窗口 测试网址代码 <html> <head> <title>你喜欢的水果</title> </head> ...