【BZOJ4916】神犇和蒟蒻

Description

很久很久以前,有一群神犇叫sk和ypl和ssr和hjh和hgr和gjs和yay和xj和zwl和dcx和lyy和dtz和hy和xfz和myh和yww和zjt;

很久很久之后,有一只蒟蒻叫ypl,被神犇myh的做题记录碾在地上;

Input

​ 请你读入一个整\(N\);

Output

​ 请你输出一个整数\(A=\sum_{i=1}^n\mu(i^2);(\bmod1000000007)\)

​ 请你输出一个整数\(B=\sum_{i=1}^n\varphi(i^2);(\bmod 1000000007)\)

HINT

\(1≤N≤10^9\)


杜教筛板子,复习了一下...

显然\(A=1\)

然后\(\varphi(i^2)=i\varphi(i)\),因为不改变质因子的种类,所以可以直接乘出来。

设\(\mathtt f=i\varphi(i)\),那么

\[\mathtt {Id^2}=\mathtt f * \mathtt{Id}
\]

于是直接杜教筛就行了


Code:

#include <cstdio>
#include <unordered_map>
#define ll long long
std::unordered_map <int,ll> F;
const int N=1e6;
const ll mod=1e9+7;
int pri[N+10],ispri[N+10],cnt;
ll f[N+10];
void init()
{
f[1]=1;
for(int i=2;i<=N;i++)
{
if(!ispri[i])
{
pri[++cnt]=i;
f[i]=i-1;
}
for(int j=1;j<=cnt&&pri[j]*i<=N;j++)
{
ispri[i*pri[j]]=1;
if(i%pri[j]==0)
{
f[i*pri[j]]=f[i]*pri[j];
break;
}
f[i*pri[j]]=f[i]*(pri[j]-1);
}
}
for(int i=1;i<=N;i++) f[i]=(f[i]*i+f[i-1])%mod;
}
#define g(a) (1ll*(a)*(a+1)/2)
const ll inv=166666668;
ll Sum(int n)
{
if(n<=N) return f[n];
if(F.find(n)!=F.end()) return F[n];
ll ret=1ll*n*(n<<1|1)%mod*(n+1)%mod*inv%mod;
for(int l=2,r;l<=n;l=r+1)
{
r=n/(n/l);
(ret-=(g(r)-g(l-1))*Sum(n/l))%=mod;
}
return F[n]=((ret+mod)%mod);
}
int main()
{
init();
int n;scanf("%d",&n);
printf("1\n%lld",Sum(n));
return 0;
}

2018.12.16

【BZOJ4916】神犇和蒟蒻 解题报告的更多相关文章

  1. LG4213 【模板】杜教筛(Sum)和 BZOJ4916 神犇和蒟蒻

    P4213 [模板]杜教筛(Sum) 题目描述 给定一个正整数$N(N\le2^{31}-1)$ 求 $$ans_1=\sum_{i=1}^n\varphi(i)$$ $$ans_2=\sum_{i= ...

  2. BZOJ4916: 神犇和蒟蒻【杜教筛】

    Description 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; Input 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; Output 请你 ...

  3. BZOJ4916 神犇和蒟蒻 【欧拉函数 + 杜教筛】

    题目 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; 输入格式 请你读入一个整数N;1<=N<=1E9,A.B模1E9+7; 输出格式 请你输出一个整数A=\sum ...

  4. BZOJ4916 神犇和蒟蒻(欧拉函数+杜教筛)

    第一问是来搞笑的.由欧拉函数的计算公式容易发现φ(i2)=iφ(i).那么可以发现φ(n2)*id(n)(此处为卷积)=Σd*φ(d)*(n/d)=nΣφ(d)=n2 .这样就有了杜教筛所要求的容易算 ...

  5. Bzoj4916: 神犇和蒟蒻

    题面 传送门 Sol 第一问puts("1") 第二问,\(\varphi(i^2)=i\varphi(i)\) 设\(\phi(n)=\sum_{i=1}^{n}i\varphi ...

  6. BZOJ4916: 神犇和蒟蒻(杜教筛)

    题意 求 $$\sum_{i = 1}^n \mu(i^2)$$ $$\sum_{i = 1}^n \phi(i^2)$$ $n \leqslant 10^9$ Sol zz的我看第一问看了10min ...

  7. [BZOJ4916]神犇和蒟蒻 杜教筛/Min_25筛

    题目大意: 给定\(n\le 10^9\),求: 1.\(\sum_{i=1}^n\mu(i^2)\) 2.\(\sum_{i=1}^n\varphi(i^2)\) 解释 1.\(\sum_{i=1} ...

  8. 【BZOJ4916】神犇和蒟蒻(杜教筛)

    [BZOJ4916]神犇和蒟蒻(杜教筛) 题面 BZOJ 求 \[\sum_{i=1}^n\mu(i^2)\ \ 和\ \sum_{i=1}^n\phi(i^2)\] 其中\[n<=10^9\] ...

  9. 【BZOJ4916】神犇与蒟蒻

    题面 Description 很久很久以前,有一只神犇叫yzy; 很久很久之后,有一只蒟蒻叫lty; Input 请你读入一个整数N;\(1<=N<=10^9\),A.B模\(10^9+7 ...

随机推荐

  1. anaconda+pycharm的安装和应用

    至于anaconda的安装与pycharm的安装在此不做多说,主要说下遇到的问题. 问题描述: 安装anaconda后,pip下载的第三方库调用不到. 原因分析: anaconda自带的python3 ...

  2. oozie捕获标准输出&异常capture-output

    对于普通的java-action或者shell-action 都是支持的只要标准输出是"k1=v1"这中格式的就行: 现用test.py进行测试: ##test.py #! /op ...

  3. kuberentes 源码编译安装

    下载源码 git clone https://github.com/kubernetes/kubernetes && cd kubernetes # 切换版本分支 git checko ...

  4. 解决maven update project 后项目jdk变成1.5

    http://blog.csdn.net/jay_1989/article/details/52687934

  5. 《JavaScript》字符转义

    escape/unescape encodeURIComponent/decodeURIComponent encodeURI/decodeURI 转义函数会对一些 特殊字符进行转义编码 英文.数字. ...

  6. spring冲刺第十天

    调试运行,对整体的游戏方面进行改进.冲刺完了,但依然有很多问题,比如无法暂停,游戏结束后只能退出重来等

  7. OC中的私有方法

    1.不写在.h文件中 2.不写在.m文件中 一.私有方法: 没有在.h文件当中进行声明的方法在OC中都被称为私有方法 私有方法子类是无法继承到的

  8. Week-4-作业1

    前言 经过了上周作业的学习拾遗,让我学到了很多东西,也能更好的阅读<构建之法>这本书,下面是我在阅读过第四章和第十七章之后想到的一些问题. 第四章 4.2.1 关于缩进,书中说用四个空格刚 ...

  9. 《软件工程和Python》PYTHON效能分析和Django

    资料汇总网站:http://www.yzhiliao.com/my/course/55 一..作业下面两个题目任选一题: (1)运用jieba库分词(或者你喜欢的其他库),并把代码发到git上去(不发 ...

  10. NTP同步网络时间

    为什么要同步网络时间呢,这是由于树莓派没有RTC和后备电池,不能像PC机那样关机之后仍可以走时. NTP对时步骤: 1 安装ntpdate sudo apt-get install ntpdate s ...