设$pre[i]$表示第$i$个数上一次出现的位置,$d[i]=abs(a[i]-a[i+1])$。

用线段树维护区间内$a$的最小值、最大值,$pre$的最大值以及$d$的$\gcd$。

对于询问$l\ r\ k$,首先特判掉$l=r$或者$k=0$的情况。

然后求出区间最小值和最大值、以及$pre$的最大值,判断最值是否合法以及$pre$是否都小于$l$。

如果都满足,那么继续查询$[l,r-1]$里所有$d$的$\gcd$,如果$\gcd$是$k$的倍数,那么就可行。

时间复杂度$O(n\log n)$。

#include<cstdio>
#include<cstdlib>
#include<map>
#include<set>
#include<algorithm>
using namespace std;
const int N=300010,M=1050000;
int n,m,cnt,i,op,x,y,z,a[N],b[N],c[N],d[N],K;
int vmi[M],vma[M],vp[M],vd[M],mi,ma,flag,g;
map<int,int>id;
set<int>T[N<<1];
set<int>::iterator pre,nxt;
inline void read(int&a){char c;while(!(((c=getchar())>='0')&&(c<='9')));a=c-'0';while(((c=getchar())>='0')&&(c<='9'))(a*=10)+=c-'0';}
inline int abs(int x){return x>0?x:-x;}
inline int gcd(int a,int b){
if(!a)return b;
if(!b)return a;
return __gcd(a,b);
}
inline int getid(int x){
int&t=id[x];
if(t)return t;
t=++cnt;
T[t].insert(0),T[t].insert(n+1);
return t;
}
void build(int x,int a,int b){
if(a==b){
vmi[x]=vma[x]=::a[a];
vp[x]=c[a];
vd[x]=d[a];
return;
}
int mid=(a+b)>>1;
build(x<<1,a,mid),build(x<<1|1,mid+1,b);
vmi[x]=min(vmi[x<<1],vmi[x<<1|1]);
vma[x]=max(vma[x<<1],vma[x<<1|1]);
vp[x]=max(vp[x<<1],vp[x<<1|1]);
vd[x]=gcd(vd[x<<1],vd[x<<1|1]);
}
void changep(int x,int a,int b,int c,int p){
if(a==b){
vp[x]=p;
return;
}
int mid=(a+b)>>1;
if(c<=mid)changep(x<<1,a,mid,c,p);else changep(x<<1|1,mid+1,b,c,p);
vp[x]=max(vp[x<<1],vp[x<<1|1]);
}
void change(int x,int a,int b,int c,int v,int p){
if(a==b){
vmi[x]=vma[x]=v;
vp[x]=p;
return;
}
int mid=(a+b)>>1;
if(c<=mid)change(x<<1,a,mid,c,v,p);else change(x<<1|1,mid+1,b,c,v,p);
vmi[x]=min(vmi[x<<1],vmi[x<<1|1]);
vma[x]=max(vma[x<<1],vma[x<<1|1]);
vp[x]=max(vp[x<<1],vp[x<<1|1]);
}
void changed(int x,int a,int b,int c,int p){
if(a==b){
vd[x]=p;
return;
}
int mid=(a+b)>>1;
if(c<=mid)changed(x<<1,a,mid,c,p);else changed(x<<1|1,mid+1,b,c,p);
vd[x]=gcd(vd[x<<1],vd[x<<1|1]);
}
void ask(int x,int a,int b,int c,int d){
if(c<=a&&b<=d){
mi=min(mi,vmi[x]);
ma=max(ma,vma[x]);
if(vp[x]>=c)flag=1;
return;
}
int mid=(a+b)>>1;
if(c<=mid)ask(x<<1,a,mid,c,d);
if(d>mid)ask(x<<1|1,mid+1,b,c,d);
}
void askd(int x,int a,int b,int c,int d){
if(c<=a&&b<=d){
g=gcd(g,vd[x]);
return;
}
int mid=(a+b)>>1;
if(c<=mid)askd(x<<1,a,mid,c,d);
if(d>mid)askd(x<<1|1,mid+1,b,c,d);
}
inline bool query(int x,int y,int z){
if(x==y)return 1;
mi=1000000000,ma=flag=g=0;
ask(1,1,n,x,y);
if(!z)return mi==ma;
if(flag)return 0;
if(1LL*(y-x)*z+mi!=ma)return 0;
askd(1,1,n,x,y-1);
return g%z==0;
}
int main(){
read(n),read(m);
for(i=1;i<=n;i++){
read(a[i]);
T[b[i]=getid(a[i])].insert(i);
pre=T[b[i]].find(i);
c[i]=*(--pre);
}
for(i=1;i<n;i++)d[i]=abs(a[i]-a[i+1]);
build(1,1,n);
while(m--){
read(op),read(x),read(y);x^=K,y^=K;
if(op==1){
pre=nxt=T[b[x]].find(x);
pre--,nxt++;
if(*nxt<n)changep(1,1,n,*nxt,*pre);
T[b[x]].erase(x);
b[x]=getid(y);
T[b[x]].insert(x);
pre=nxt=T[b[x]].find(x);
pre--,nxt++;
if(*nxt<n)changep(1,1,n,*nxt,x);
change(1,1,n,x,a[x]=y,*pre);
if(x>1)changed(1,1,n,x-1,abs(a[x-1]-y));
if(x<n)changed(1,1,n,x,abs(y-a[x+1]));
}else{
read(z);
if(query(x,y,z^K))K++,puts("Yes");else puts("No");
}
}
return 0;
}

  

BZOJ4373 : 算术天才⑨与等差数列的更多相关文章

  1. BZOJ4373 算术天才⑨与等差数列 【线段树】*

    BZOJ4373 算术天才⑨与等差数列 Description 算术天才⑨非常喜欢和等差数列玩耍. 有一天,他给了你一个长度为n的序列,其中第i个数为a[i]. 他想考考你,每次他会给出询问l,r,k ...

  2. 【线段树 集合hash】bzoj4373: 算术天才⑨与等差数列

    hash大法好(@ARZhu):大数相乘及时取模真的是件麻烦事情 Description 算术天才⑨非常喜欢和等差数列玩耍.有一天,他给了你一个长度为n的序列,其中第i个数为a[i].他想考考你,每次 ...

  3. [BZOJ4373]算术天才⑨与等差数列(线段树)

    [l,r]中所有数排序后能构成公差为k的等差数列,当且仅当: 1.区间中最大数-最小数=k*(r-l) 2.k能整除区间中任意两个相邻数之差,即k | gcd(a[l+1]-a[l],a[l+2]-a ...

  4. BZOJ4373 算术天才⑨与等差数列(线段树)

    看上去很难维护,考虑找一些必要条件.首先显然最大值-最小值=k*(r-l).然后区间内的数需要模k同余.最后区间内的数两两不同(k=0除外).冷静一下可以发现这些条件组合起来就是充分的了. 考虑怎么维 ...

  5. BZOJ4373 算术天才与等差数列 题解

    题目大意: 一个长度为n的序列,其中第i个数为a[i].修改一个点的值询问区间[l,r]内的数从小到大排序后能否形成公差为k的等差数列. 思路: 1.一段区间符合要求满足:(1)区间中的max-min ...

  6. BZOJ4373: 算术天才⑨与等差数列(线段树 hash?)

    题意 题目链接 Sol 正经做法不会,听lxl讲了一种很神奇的方法 我们考虑如果满足条件,那么需要具备什么条件 设mx为询问区间最大值,mn为询问区间最小值 mx - mn = (r - l) * k ...

  7. bzoj4373 算术天才⑨与等差数列——线段树+set

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4373 一个区间有以 k 为公差的数列,有3个条件: 1.区间 mx - mn = (r-l) ...

  8. 【BZOJ4373】算术天才⑨与等差数列 线段树+set

    [BZOJ4373]算术天才⑨与等差数列 Description 算术天才⑨非常喜欢和等差数列玩耍.有一天,他给了你一个长度为n的序列,其中第i个数为a[i].他想考考你,每次他会给出询问l,r,k, ...

  9. 【BZOJ4373】算术天才⑨与等差数列 [线段树]

    算术天才⑨与等差数列 Time Limit: 10 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 算术天才⑨非常喜欢和等 ...

随机推荐

  1. 使用 systemd timer 备份数据库

    导读 主要的Linux发行版都改用systemd 来替代 System V启动方式,其中 systemd timer 能替代 crontab 计划任务的大部分功能.本文介绍了用systemd time ...

  2. 多层神经网络与C++实现

    BP理论部分参考:http://blog.csdn.net/itplus/article/details/11022243 参考http://www.cnblogs.com/ronny/p/ann_0 ...

  3. ZeroMQ(java)之Router与Dealer运行原理

    在开始这部分的内容之前,先来看看ZeroMQ中HWM概念---High-Water Marks 当系统的数据量很大,而且发送频率很高的情况下,内存就很重要了,如果处理不好会出现很多问题,例如如下场景: ...

  4. JSP基本面试的试题

    JSP基本面试的试题 1.jsp有哪些内置对象作用分别是什么 答:JSP共有以下9种基本内置组件(可与ASP的6种内部组件相对应):      request 用户端请求,此请求会包含来自GET/PO ...

  5. Mysql函数集合

    Mysql提供了很多函数 提供的常用函数集合 一.数学函数 ABS(x) 返回x的绝对值 BIN(x) 返回x的二进制(OCT返回八进制,HEX返回十六进制) CEILING(x) 返回大于x的最小整 ...

  6. win7/ubuntu双系统下,如何恢复成win7引导及卸载ubuntu

    电脑原来是win7系统,后来通过硬盘安装了Ubuntu,同时把Ubuntu设置成了开机引导项(开机时选择操作系统的界面成了紫色背景白色字体的界面),ubuntu引导开机的缺点是将来要卸载Ubuntu时 ...

  7. cookie注入的形成,原理,利用总结

    一:cookie注入的形成 程序对提交数据获取方式是直接request("c.s.t")的方式.未指明使用request对象的具体方法进行获取. 二:原理 request(&quo ...

  8. poj 1833

    http://poj.org/problem?id=1833 next_permutation这个函数是用来全排列的,按字典的序进行排列,当排列无后继的最大值时,会执行字典升序排列,相当于排序: 当排 ...

  9. explict关键字

    [本文链接] http://www.cnblogs.com/hellogiser/p/explict.html [分析] explicit 只对构造函数起作用,用来抑制隐式转换. Suppose yo ...

  10. 4.在二元树中找出和为某一值的所有路径[FindPathsInBinaryTree]

    [题目]: 输入一个整数和一棵二元树.从树的根结点开始往下访问一直到叶结点所经过的所有结点形成一条路径.打印出和与输入整数相等的所有路径. 例如输入整数22和如下二元树 10              ...