1. 非常好的 Python 教程

《深入 Python 3.0》 以及 IBM 开发社区的博客探索 Python.

2. 子集: s 是 S 的子集

>>>S = {2, 3, 4, 5, 6, 7}
>>>s = {x for x in S if x%2==0} # 偶数子集
>>>s
set([2, 4, 6])

3. 映射:Ceasar 加密

>>> import string
>>> table = string.maketrans("abcdefghijklmnopqrstuvwxyz", "cdefghijklmnopqrstuvwxyzab") # 向后平移两位
>>> print "hello".translate(table)
jgnnq

4. 复数练习

>>> 1 + 1j
(1+1j)
>>> 1 + 1j + (10 + 20j) # 相加
(11+21j)
>>> x = 1 + 3j
>>> (x - 1)**2 # 相乘
(-9+0j)
>>> x.real # 实部
1.0
>>> x.imag # 虚部
3.0
>>> type(x)
<type 'complex'>

5. 复平面

  • 复数的绝对值

    >>> abs(3 + 4j)
    5.0

  • 复数画点

    plotting.py 的下载地址

    >>> from plotting import plot
    >>> L = [2+2j, 3+2j, 1.75+1j, 2+1j, 2.25+1j, 2.5+1j, 2.75+1j, 3+1j, 3.25+1j]
    >>> plot(L)

    画图如下:

  • 复数画图

    >>> from image import *
    >>> I = color2gray(file2image('./pic/01.png'))
    >>> row = len(I) # 垂直高度
    >>> col = len(I[0]) # 水平长度
    >>> M = [x + y*1j for x in range(col) for y in range(row) if I[row-y-1][x] < 120]
    >>> plot(M, max(row, col), 1) # 第二个参数便于坐标系大小的自动调节, 第三个参数表示每个像素显示的大小

  • 图像平移

    (x + yi) to (a+x + (b+y)i)

    >>> plot({z + (1+2j) for z in L})

  • 图像缩放

    (x + yi) to (0.5x + 0.5yi)

    >>> plot([.5*z for z in M], max(row, col), 1)

  • 中心对称变换

    (x + yi) to (-x - yi)

    >>> plot({-z for z in L})

  • 以坐标轴为中心旋转 90 度

    (x + yi) to (-y + xi)

    the same as:

    (x + yi) to i*(x + yi)

    >>> plot({1j*z for z in L})

  • 以坐标轴为中心任意旋转和缩放

    旋转 45 度:

    >>> from math import pi, e
    >>> plot([e**(pi*1j/4)*z for z in M], max(row, col), 1)

    欧拉恒等式:

    欧拉公式:

6. Playing with GF(2)

  • 玩玩有限域(伽罗华域, galois field)

    galois field 2 只有两个元素: 0 和 1. 在这个域中,加法运算是异或操作,乘法运算是与操作。运算律比如分配律在这里仍然适用。

    >>> from GF2 import one
    >>> one + one
    0
    >>> one + 0
    one
    >>> one * one
    one
    >>> one * 0
    0
    >>> one / one
    one

    对于这样一个加密系统:

    概率均匀分布,并且密文与明文是独立的。

  • Network coding

    Streaming video through network

    a) 一个顾客木有问题

    b) 两个顾客发生冲突

    c) 先编码,再解码,两个发送端可同时发送到两个接收端

Coding the Matrix (0):映射、复数和域的更多相关文章

  1. 【Python】Coding the Matrix:Week 5: Dimension Homework 5

    这一周的作业,刚压线写完.Problem3 没有写,不想证明了.从Problem 9 开始一直到最后难度都挺大的,我是在论坛上看过了别人的讨论才写出来的,挣扎了很久. Problem 9在给定的基上分 ...

  2. Coding the Matrix Week 1 The Vector Space作业

    Coding the Matrix: Linear Algebra through Computer Science Applications 本周的作业较少,只有一个编程任务hw2.作业比较简单,如 ...

  3. Coding the Matrix作业Python Lab及提交方法

    Coding the Matrix: Linear Algebra through Computer Science Applications 这是一门用python实现矩阵运算的课,第一次作业就感觉 ...

  4. Spring boot2.0 与 2.0以前版本 跨域配置的区别

    一·简介 spring boot升级到2.0后发现继承WebMvcConfigurerAdapter实现跨域过时了,那我们就紧随潮流. 二·全局配置 2.0以前 支持跨域请求代码: import or ...

  5. Coding the Matrix (3):矩阵

    1. 矩阵与映射 矩阵和映射包含两方面的关系: 简单:已知矩阵 M, 从向量 x 映射到 M * x. (注:矩阵与行向量的点乘) 稍微复杂:已知映射 x ->M * x, 求矩阵 M. 第一种 ...

  6. Vuejs2.0之异步跨域请求

    Vuejs由1.0更新到了2.0版本.HTTP请求官方也从推荐使用Vue-Resoure变为了axios.接下来我们来简单地用axios进行一下异步请求.(阅读本文作者默认读者具有使用npm命令的能力 ...

  7. Natasha 4.0 探索之路系列(二) "域"与插件

    域与ALC 在 Natasha 发布之后有不少小伙伴跑过来问域相关的问题, 能不能兼容 AppDomain, 如何使用 AppDomain, 为什么 CoreAPI 阉割了 AppDomain 等一系 ...

  8. tomcat7.0配置CORS(跨域资源共享)

    平时我们做前台页面时可能会遇到浏览器以下提示(浏览器控制台): 已阻止跨源请求:同源策略禁止读取位于 http://xxx.xxx.com 的远程资源.(原因:CORS 头缺少 'Access-Con ...

  9. Coding the Matrix (2):向量空间

    1. 线性组合 概念很简单: 当然,这里向量前面的系数都是标量. 2. Span 向量v1,v2,.... ,vn的所有线性组合构成的集合,称为v1,v2,... ,vn的张成(span).向量v1, ...

随机推荐

  1. 【VB超简单入门】二、知识准备

    在开始编程之前,需要先熟悉一下各种操作和术语,以后学习编程才能得心应手. 首先最重要的操作当然就是-电脑的开机关机啦~(开个玩笑哈哈),必须掌握软件的安装和卸载,还有能编写批处理程序对平时的使用也是很 ...

  2. HTML5客户端数据存储

    HTML5 使在不影响网站性能的情况下存储大量数据成为可能.之前,这些都是由 cookie 完成的,cookie不适合大量数据的存储,因为会影响速度. 举个例子: var obj = {x:1}; / ...

  3. Linux traceroute

    一.简介 traceroute 通过发送 TCP 数据包向目标端口进行探测,以检测源到目标服务器的整个链路上相应端口的连通性情况.   二.语法 -n 直接使用IP地址而非主机名称(禁用 DNS 反查 ...

  4. [转]Cordova + Ionic in Visual Studio - 101 Tutorial [Part I]

    本文转自:http://binarylies.ghost.io/cordova-ionic-in-visual-studio/ Hi everyone, I thought about lending ...

  5. 《EXO指数型组织》阅读脑图

    书籍:<EXO指数型组织:打造独角兽公司的11个最强属性> 预览链接:https://www.processon.com/view/link/57ce8279e4b08cbf6ca8f85 ...

  6. 用Access作为后台数据库支撑,书写一个用C#写入记录的案例

    具体的步骤: 1.创建并打开一个OleDbConnection对象 2.创建插入的SQL语句 3.创建一个OleDbCommand对象 4.使用OleDbCommand对象来插入数据 5.关闭OleD ...

  7. 在同一个机器中安装LoadRunner与QTP

    若你计划在测试机上安装LoadRunner并且测试机上已经安装了QTP,类似这样的情况可能会出现一些冲突现象,若QTP与LR必须并存在同一测试机上,那么请确保先安装Loadrunner以及所有的LR补 ...

  8. java 16 -3 Vector的特有功能

    /* * Vector的特有功能: * 1:添加功能 替代 * public void addElement(Object obj) -- add() * 2:获取功能 * public Object ...

  9. sql语句原则

    整理尘封的文档,sql语句方面的几条原则再次回顾一下.更详细版本 1. 尽量使用临时表扫描替代全表扫描: 2. 抛弃in和not in语句,使用exists和not exists替代:IN和EXIST ...

  10. Oracle Update

    在表的更新操作中,在很多情况下需要在表达式中引用要更新的表以外的数据.象sql server提供了update的from 子句,可以将要更新的表与其它的数据源连接起来.虽然只能对一个表进行更新,但是通 ...