【BZOJ2427】[HAOI2010]软件安装(动态规划,Tarjan)

题面

BZOJ

洛谷

题解

看到这类题目就应该要意识到依赖关系显然是可以成环的。

注意到这样一个性质,依赖关系最多只有一个,因此环状的依赖关系一定单独成环,其他点只可能将这个环作为依赖。

那么不成环的话,因为依赖关系只有一个,所以必定成树。

那么如果我们把所有环也给理解为一个单点的话,那么就是有一片森林,做一个树型背包即可。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
#define MAX 150
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
struct Line{int v,next;}e[MAX<<2];
int h[MAX],cnt=1,dg[MAX];
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;dg[v]++;}
int dfn[MAX],low[MAX],tim,top,St[MAX],ins[MAX];
int n,m,V[MAX],W[MAX],nvis[MAX],ans;
void Tarjan(int u)
{
dfn[u]=low[u]=++tim;St[++top]=u;ins[u]=1;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;
if(!dfn[v])Tarjan(v),low[u]=min(low[u],low[v]);
else if(ins[v])low[u]=min(low[u],dfn[v]);
}
if(dfn[u]==low[u])
{
int sw=0,sv=0,v,sz=0;
do
{
v=St[top--];sw+=W[v],sv+=V[v];ins[v]=0;W[v]=V[v]=0;nvis[v]=1;++sz;
if(u!=v)
for(int i=h[v];i;i=e[i].next)
Add(u,e[i].v);
}while(u!=v);
W[u]=sw;V[u]=sv;if(sz>1)dg[u]=0;nvis[u]=0;
}
}
int f[MAX][505],sw[MAX],tmp[505];
void dfs(int u)
{
if(W[u]<=m)f[u][W[u]]=V[u];sw[u]=W[u];nvis[u]=true;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;if(nvis[v])continue;
dfs(v);
for(int j=0;j<=m&&j<=sw[u]+sw[v];++j)tmp[j]=-1e9;
for(int j=0;j<=sw[u];++j)
for(int k=0;k<=sw[v]&&j+k<=m;++k)
tmp[j+k]=max(tmp[j+k],f[u][j]+f[v][k]);
sw[u]+=sw[v];
for(int j=0;j<=m&&j<=sw[u];++j)f[u][j]=max(f[u][j],tmp[j]);
}
f[u][0]=0;
}
int main()
{
n=read();m=read();
for(int i=1;i<=n;++i)W[i]=read();
for(int i=1;i<=n;++i)V[i]=read();
for(int i=1;i<=n;++i)
{
int x=read();
if(x)Add(x,i);
}
for(int i=1;i<=n;++i)if(!dfn[i])Tarjan(i);
for(int i=1;i<=n;++i)if(!dg[i])Add(0,i);
memset(f,-63,sizeof(f));dfs(0);
for(int i=0;i<=m;++i)ans=max(ans,f[0][i]);
printf("%d\n",ans);
return 0;
}

【BZOJ2427】[HAOI2010]软件安装(动态规划,Tarjan)的更多相关文章

  1. [BZOJ2427][HAOI2010]软件安装(Tarjan+DP)

    2427: [HAOI2010]软件安装 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1987  Solved: 791[Submit][Statu ...

  2. bzoj2427:[HAOI2010]软件安装(Tarjan+tree_dp)

    2427: [HAOI2010]软件安装 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1053  Solved: 424[Submit][Statu ...

  3. [HAOI2010]软件安装(Tarjan,树形dp)

    [HAOI2010]软件安装 题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可 ...

  4. bzoj2427: [HAOI2010]软件安装

    Description 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和 ...

  5. BZOJ2427:[HAOI2010]软件安装(树形DP,强连通分量)

    Description 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和 ...

  6. 题解【bzoj2427 [HAOI2010]软件安装】

    Description 现在我们的手头有\(N\)个软件,对于一个软件\(i\),它要占用\(W_i\)的磁盘空间,它的价值为\(V_i\).我们希望从中选择一些软件安装到一台磁盘容量为\(M\)计算 ...

  7. [BZOJ2427]:[HAOI2010]软件安装(塔尖+DP)

    题目传送门 题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用${W}_{i}$的磁盘空间,它的价值为${V}_{i}$.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件 ...

  8. [bzoj2427][HAOI2010]软件安装——强连通分量+树形DP

    题目大意 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大). 但是 ...

  9. [BZOJ2427][HAOI2010]软件安装-tarjan缩点-树上dp

    <题面> 这个题真伤人 之前Tarjan和树规都没学好,吃了不少亏,仔仔细细的搞了一天,收获颇丰 先来一个Tarjan的链接:$\mathbb{O}$ 题目的数据比较友好: $dp$不对: ...

  10. BZOJ2427: [HAOI2010]软件安装 tarjan+树形背包

    分析: 一开始我以为是裸的树形背包...之后被告知这东西...可能有环...什么!有环! 有环就搞掉就就可以了...tarjan缩点...建图记得建立从i到d[i]之后跑tarjan,因为这样才能判断 ...

随机推荐

  1. Linux下修改/设置环境变量JAVA_HOME

    export设置只对当前的bash登录session有效.这是存在内存里面的.你可以写入文件一般的文件.之后source它.或者放到/etc/profile 等等的位置里,不同的地方效果不同. 1. ...

  2. Ionic app 上传图片之webApi接口

    App上传图片对应的webApi服务端是怎么处理的呢? using System; using System.Collections.Generic; using System.Diagnostics ...

  3. Luogu P3959 宝藏

    这道题正解是状压DP,不过我不会所以写一下随机化算法来骗骗分. 听说当时考场上就有很多写prim然后挂掉的神仙,其实这道题是可以prim过的 prim是一种基于贪心的算法,在本题中由于盲目的选择当前最 ...

  4. 数列分块入门九题(二):LOJ6280~6282

    Preface 个人感觉这中间的三题是最水的没有之一 数列分块入门 4--区间加法,区间求和 这个也是很多数据结构完爆的题目线段树入门题,但是练分块我们就要写吗 修改还是与之前类似,只不过我们要维护每 ...

  5. Solr数据库导入

    Solr数据库导入 1.在MySQL中创建一张表t_solr,并插入测试数据. 2.把E:\Solr\solr-4.10.4\example\example-DIH\solr\db\conf下的adm ...

  6. NFS共享文件系统部署

    1. 概述 本篇博客主要是介绍如何安装和使用NFS服务. 2. 安装软件包 首先确认系统是否已经安装相应的软件包,执行命:rpm -qa | egrep "rpcbind|nfs-utils ...

  7. Spark Streaming简介及原理

    简介: SparkStreaming是一套框架. SparkStreaming是Spark核心API的一个扩展,可以实现高吞吐量的,具备容错机制的实时流数据处理. 支持多种数据源获取数据: Spark ...

  8. Python - 列表解析式

    列表解析——用来动态地创建列表 [expr for iter_var in iterable if cond_expr] 例子一: map(lambda x: x**2, range(6)) [0, ...

  9. PLSQL使用技巧 如何设置默认显示My Objects、记住密码等

    https://www.cnblogs.com/yilinzi/p/7144852.html PL/SQL Developer实现双击table查询 https://blog.csdn.net/zhy ...

  10. 2016-03-22 OneZero团队 Daily Scrum Meeting

    会议时间: 2016-03-22 9:33-9:57am 会议内容: 一.在原有Sprint Backlog基础上,我们加了亮点(摇一摇功能:随机选取一条记录在界面显示,以提醒主页君回忆) 需求分析图 ...