【BZOJ2427】[HAOI2010]软件安装(动态规划,Tarjan)

题面

BZOJ

洛谷

题解

看到这类题目就应该要意识到依赖关系显然是可以成环的。

注意到这样一个性质,依赖关系最多只有一个,因此环状的依赖关系一定单独成环,其他点只可能将这个环作为依赖。

那么不成环的话,因为依赖关系只有一个,所以必定成树。

那么如果我们把所有环也给理解为一个单点的话,那么就是有一片森林,做一个树型背包即可。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<vector>
using namespace std;
#define MAX 150
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
struct Line{int v,next;}e[MAX<<2];
int h[MAX],cnt=1,dg[MAX];
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;dg[v]++;}
int dfn[MAX],low[MAX],tim,top,St[MAX],ins[MAX];
int n,m,V[MAX],W[MAX],nvis[MAX],ans;
void Tarjan(int u)
{
dfn[u]=low[u]=++tim;St[++top]=u;ins[u]=1;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;
if(!dfn[v])Tarjan(v),low[u]=min(low[u],low[v]);
else if(ins[v])low[u]=min(low[u],dfn[v]);
}
if(dfn[u]==low[u])
{
int sw=0,sv=0,v,sz=0;
do
{
v=St[top--];sw+=W[v],sv+=V[v];ins[v]=0;W[v]=V[v]=0;nvis[v]=1;++sz;
if(u!=v)
for(int i=h[v];i;i=e[i].next)
Add(u,e[i].v);
}while(u!=v);
W[u]=sw;V[u]=sv;if(sz>1)dg[u]=0;nvis[u]=0;
}
}
int f[MAX][505],sw[MAX],tmp[505];
void dfs(int u)
{
if(W[u]<=m)f[u][W[u]]=V[u];sw[u]=W[u];nvis[u]=true;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;if(nvis[v])continue;
dfs(v);
for(int j=0;j<=m&&j<=sw[u]+sw[v];++j)tmp[j]=-1e9;
for(int j=0;j<=sw[u];++j)
for(int k=0;k<=sw[v]&&j+k<=m;++k)
tmp[j+k]=max(tmp[j+k],f[u][j]+f[v][k]);
sw[u]+=sw[v];
for(int j=0;j<=m&&j<=sw[u];++j)f[u][j]=max(f[u][j],tmp[j]);
}
f[u][0]=0;
}
int main()
{
n=read();m=read();
for(int i=1;i<=n;++i)W[i]=read();
for(int i=1;i<=n;++i)V[i]=read();
for(int i=1;i<=n;++i)
{
int x=read();
if(x)Add(x,i);
}
for(int i=1;i<=n;++i)if(!dfn[i])Tarjan(i);
for(int i=1;i<=n;++i)if(!dg[i])Add(0,i);
memset(f,-63,sizeof(f));dfs(0);
for(int i=0;i<=m;++i)ans=max(ans,f[0][i]);
printf("%d\n",ans);
return 0;
}

【BZOJ2427】[HAOI2010]软件安装(动态规划,Tarjan)的更多相关文章

  1. [BZOJ2427][HAOI2010]软件安装(Tarjan+DP)

    2427: [HAOI2010]软件安装 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1987  Solved: 791[Submit][Statu ...

  2. bzoj2427:[HAOI2010]软件安装(Tarjan+tree_dp)

    2427: [HAOI2010]软件安装 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1053  Solved: 424[Submit][Statu ...

  3. [HAOI2010]软件安装(Tarjan,树形dp)

    [HAOI2010]软件安装 题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可 ...

  4. bzoj2427: [HAOI2010]软件安装

    Description 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和 ...

  5. BZOJ2427:[HAOI2010]软件安装(树形DP,强连通分量)

    Description 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和 ...

  6. 题解【bzoj2427 [HAOI2010]软件安装】

    Description 现在我们的手头有\(N\)个软件,对于一个软件\(i\),它要占用\(W_i\)的磁盘空间,它的价值为\(V_i\).我们希望从中选择一些软件安装到一台磁盘容量为\(M\)计算 ...

  7. [BZOJ2427]:[HAOI2010]软件安装(塔尖+DP)

    题目传送门 题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用${W}_{i}$的磁盘空间,它的价值为${V}_{i}$.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件 ...

  8. [bzoj2427][HAOI2010]软件安装——强连通分量+树形DP

    题目大意 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大). 但是 ...

  9. [BZOJ2427][HAOI2010]软件安装-tarjan缩点-树上dp

    <题面> 这个题真伤人 之前Tarjan和树规都没学好,吃了不少亏,仔仔细细的搞了一天,收获颇丰 先来一个Tarjan的链接:$\mathbb{O}$ 题目的数据比较友好: $dp$不对: ...

  10. BZOJ2427: [HAOI2010]软件安装 tarjan+树形背包

    分析: 一开始我以为是裸的树形背包...之后被告知这东西...可能有环...什么!有环! 有环就搞掉就就可以了...tarjan缩点...建图记得建立从i到d[i]之后跑tarjan,因为这样才能判断 ...

随机推荐

  1. P1438 无聊的数列

    P1438 无聊的数列 链接 分析: 等差数列可加,首项相加,公差相加. 代码: #include<cstdio> #include<algorithm> #include&l ...

  2. [UWP 自定义控件]了解模板化控件(2):模仿ContentControl

    ContentControl是最简单的TemplatedControl,而且它在UWP出场频率很高.ContentControl和Panel是VisualTree的基础,可以说几乎所有VisualTr ...

  3. yum源使用的几个报错小总结 (例如: python2.6.6 下yum不能使用: No module named yum)

    服务器上的yum突然不好使用,使用yum时有如下几个保持,解决方案如下: 1)Error: Cannot retrieve repository metadata (repomd.xml) for r ...

  4. sheet制作返回按钮

    =HYPERLINK("#目录!A1","目录!A1") =HYPERLINK("#"&A2&"!A1" ...

  5. alpa开发阶段团队贡献分

    这是我们团队之前决定的分配方式: 1.凡是认真完成自己任务的队员,都将有基础分30分(态度分). 2. 将整个项目细化为不同的任务,列出一个任务清单,在综合.协调完每名成员的意愿后,我会分配清单中的任 ...

  6. 个人博客作业_week1

    1.<构建之法>的5个问题 1.如何避免在产品开发后期不断有重大修改,导致其他模块的连锁反应? 2.游戏用户有哪些类型? 3.如何衡量软件工程的质量? 4.怎么协调团队里相互间的任务分配? ...

  7. "Linux内核分析"第七周

    可执行程序的装载 张文俊+原创作品转载请注明出处+<Linux内核分析>MOOC课程http://mooc.study.163.com/course/USTC-1000029000 一.预 ...

  8. 《Metasploit渗透测试魔鬼训练营》第一章读书笔记

    第1章 魔鬼训练营--初识Metasploit 20135301 1.1 什么是渗透测试 1.1.1 渗透测试的起源与定义 如果大家对军事感兴趣,会知道各国军队每年都会组织一些军事演习来锻炼军队的攻防 ...

  9. 团队项目第二周spec设计

    本系统针对局域网进行联机聊天.聊天室分为服务器端和和客户端俩部分,服务器端程序主要 负责侦听客户端发来的信息,客户端需要登录到服务器端才可以实现正常的聊天功能. 1.本软件是一款局域网聊天软件,不能进 ...

  10. .NET 使用 RabbitMQ 图文简介

    前言 最近项目要使用RabbitMQ,园里里面已经有很多优秀的文章,Rabbitmq官网也有.net实例.这里我尝试下图文并茂之形式记录下使用的过程. 安装 RabbitMQ是建立在erlang OT ...