1,逆推状态:山东省赛2013年I题

Problem I: The number of steps

Description

Mary stands in a strange maze, the maze looks like a triangle(the first layer have one room,the second layer have two rooms,the third layer have three rooms …). Now she stands at the top point(the first layer), and the KEY of this maze is in the lowest layer’s leftmost room. Known that each room can only access to its left room and lower left and lower right rooms .If a room doesn’t have its left room, the probability of going to the lower left room and lower right room are a and b (a + b = 1 ). If a room only has it’s left room, the probability of going to the room is 1. If a room has its lower left, lower right rooms and its left room, the probability of going to each room are c, d, e (c + d + e = 1). Now , Mary wants to know how many steps she needs to reach the KEY. Dear friend, can you tell Mary the expected number of steps required to reach the KEY?

 

Input

There are no more than 70 test cases. 
In each case , first Input a positive integer n(0<n<45), which means the layer of the maze, then Input five real number a, b, c, d, e. (0<=a,b,c,d,e<=1, a+b=1, c+d+e=1). 
The input is terminated with 0. This test case is not to be processed.
 

Output

Please calculate the expected number of steps required to reach the KEY room, there are 2 digits after the decimal point.

Sample Input

3
0.3 0.7
0.1 0.3 0.6
0

Sample Output

3.41

思路:二维DP,d[i][j]表示在i行第j个的期望,
然后逆推,点有三种情况:
1)只能靠左走(最后一行):d[i][j] = 1;
2)能靠左走,能靠下一行的左,右走:d[i][j] = d[i][j-1]*c+d[i+1][j-1]*d + d[i+1][j]*e;
3)只能向下一层的左右走:d[i][j] = d[i+1[j-1]*a+d[i+1][j]*b;
 #include <bits/stdc++.h>
#define repu(i,a,b) for(int i=a;i<b;i++)
using namespace std;
#define N 50 int main()
{
ios::sync_with_stdio(false);
int n;
while(cin>>n&&n)
{
double dp[N][N];
double a,b,c,d,e;
cin>>a>>b>>c>>d>>e;
memset(dp,0.00,sizeof(dp));
for(int i=n; i; i--)///µÚiÐÐ
{
for(int j = n+-i; j<=n; j++)///µÚj¸ö
{
if(i==n&&j==(n+-i))
continue;
else if(i==n)
dp[i][j] = j -;
else if(j==(n+-i))
dp[i][j] = dp[i+][j-]*a+dp[i+][j]*b+;
else
dp[i][j] = dp[i+][j-]*c+dp[i+][j]*d+dp[i][j-]*e+;
}
}
cout<<fixed<<setprecision()<<dp[][n]<<endl;
}
return ;
}
                                 二,先算概率,后算期望
                                                                           SGU 495  Kids and Prizes

Description

ICPC
(International Cardboard Producing Company) is in the business of
producing cardboard boxes. Recently the company organized a contest for
kids for the best design of a cardboard box and selected M winners. There are N
prizes for the winners, each one carefully packed in a cardboard box
(made by the ICPC, of course). The awarding process will be as follows:

  • All the boxes with prizes will be stored in a separate room.
  • The winners will enter the room, one at a time.
  • Each winner selects one of the boxes.
  • The selected box is opened by a representative of the organizing committee.
  • If the box contains a prize, the winner takes it.
  • If
    the box is empty (because the same box has already been selected by one
    or more previous winners), the winner will instead get a certificate
    printed on a sheet of excellent cardboard (made by ICPC, of course).
  • Whether there is a prize or not, the box is re-sealed and returned to the room.

The management of the company would like to know how many prizes will
be given by the above process. It is assumed that each winner picks a
box at random and that all boxes are equally likely to be picked.
Compute the mathematical expectation of the number of prizes given (the
certificates are not counted as prizes, of course).

Input

The first and only line of the input file contains the values of N and M (
).

Output

The
first and only line of the output file should contain a single real
number: the expected number of prizes given out. The answer is accepted
as correct if either the absolute or the relative error is less than or
equal to 10 -9.

Sample Input

sample input
sample output
5 7
3.951424
sample input
sample output
4 3
2.3125
思路:一维DP,d[i]表示第i个人拿到奖品的概率;
从第二个人开始往后推,d[i] = d[i-1]*d[i-1] + (1-d[i-1])*(d[i-1]-1/n);
前一个人拿到奖品 + 前一个人没有拿到奖品
最后for循环累加d[i];d[i] 虽然是概率,但是在计算的时候已经把它那一步的期望算进去了,最后累加起来其实就是期望了。
 /*
SGU 495
*/
#include<stdio.h>
#include<iostream>
#include<string.h>
#include<algorithm>
#include<math.h>
using namespace std;
const int MAXN=;
double dp[MAXN];//dp[i]表示第i个人得到礼物的概率 int main()
{
int n,m;
while(scanf("%d%d",&n,&m)!=EOF)
{
dp[]=;
for(int i=;i<=m;i++)
{//第i个人得到礼物的概率:假如第i-1个人没有得到礼物,那么i得到礼物的概率和i-1一样。
//假如第i-1个人得到了礼物,那么i得到礼物的概率是i-1得到礼物概率减去1/n
dp[i]=(-dp[i-])*dp[i-]+dp[i-]*(dp[i-]-1.0/n);
}
double ans=;
for(int i=;i<=m;i++)ans+=dp[i];
printf("%.10lf\n",ans);
}
return ;
}

概率DP求解例题的更多相关文章

  1. [转]概率DP总结 by kuangbin

    概率类题目一直比较弱,准备把kuangbin大师傅总结的这篇题刷一下! 我把下面的代码换成了自己的代码! 原文地址:http://www.cnblogs.com/kuangbin/archive/20 ...

  2. 概率dp入门

    概率DP主要用于求解期望.概率等题目. 转移方程有时候比较灵活. 一般求概率是正推,求期望是逆推.通过题目可以体会到这点. poj2096:Collecting Bugs #include <i ...

  3. HDU 4405:Aeroplane chess(概率DP入门)

    http://acm.split.hdu.edu.cn/showproblem.php?pid=4405 Aeroplane chess Problem Description   Hzz loves ...

  4. HDU 4405 【概率dp】

    题意: 飞行棋,从0出发要求到n或者大于n的步数的期望.每一步可以投一下筛子,前进相应的步数,筛子是常见的6面筛子. 但是有些地方可以从a飞到大于a的b,并且保证每个a只能对应一个b,而且可以连续飞, ...

  5. [HDU 4089]Activation[概率DP]

    题意: 有n个人排队等着在官网上激活游戏.Tomato排在第m个. 对于队列中的第一个人.有以下情况: 1.激活失败,留在队列中等待下一次激活(概率为p1) 2.失去连接,出队列,然后排在队列的最后( ...

  6. HDU 4089 Activation(概率DP)(转)

    11年北京现场赛的题目.概率DP. 公式化简起来比较困难....而且就算结果做出来了,没有考虑特殊情况照样会WA到死的.... 去参加区域赛一定要考虑到各种情况.   像概率dp,公式推出来就很容易写 ...

  7. 动态规划——概率dp

    所谓概率dp,用动态规划的思想找到一个事件中可能发生的所有情况,然后找到符合要求的那些情况数,除以总数便可以得到符合要求的事件发生的概率.其核心思想还是通过dp来得到事件发生的所有情况,很类似在背包专 ...

  8. sdut2623--The number of steps(概率dp第一弹,求期望)

    The number of steps Time Limit: 1000ms   Memory limit: 65536K  有疑问?点这里^_^ 题目描写叙述 Mary stands in a st ...

  9. Codeforces #548 (Div2) - D.Steps to One(概率dp+数论)

    Problem   Codeforces #548 (Div2) - D.Steps to One Time Limit: 2000 mSec Problem Description Input Th ...

随机推荐

  1. PHP异步扩展Swoole笔记(1)

    安装Swoole扩展 通过pecl安装, 系统中最好已经有http2依赖, 如果是Ubuntu, 可以直接通过apt安装nghttp2, 如果是Centos或者需要自己编译, 在Github下载ngh ...

  2. Azure CentOS挂载磁盘

    查看新增挂载磁盘 ls -l /dev/sd*  sudo fdisk /dev/sdc 依次输入:n,p,1,w  3.格式化分区 sudo mkfs -t ext4 /dev/sdc1  4 ...

  3. Redis 的事务到底是不是原子性的

    ACID 中关于原子性的定义: 原子性:一个事务(transaction)中的所有操作,要么全部完成,要么全部不完成,不会结束在中间某个环节.事务在执行过程中发生错误,会被恢复(Rollback)到事 ...

  4. 【转载】基于rasa的对话系统搭建(上)

    文章介绍使用rasa nlu和 rasa core 实现一个电信领域对话系统demo,实现简单的业务查询办理功能,更完善的实现需要进一步数据的收集.demo基于玩具数据集,可以达到下面的效果: Bot ...

  5. windows下IDEA的terminal配置bash命令

    使用git-bash.exe会单独打开一个窗口,而我们希望是在终端内置的命令行.这里我使用bash.exe 在IDEA中,打开settings,设置相应的bash路径 settings–>Too ...

  6. Python3集合

    集合(set)是一个无序的不重复元素序列. 可以使用大括号 { } 或者 set() 函数创建集合,注意:创建一个空集合必须用 set() 而不是 { },因为 { } 是用来创建一个空字典. 创建格 ...

  7. Flutter & Dart 安装在window系统

    一.系统环境 flutter最低要求 1,windows7 SP1 64位版本以上,我的系统就是windows 7 sp1 64bit 2,git for windows ,没有安装的需要到这里下载  ...

  8. TCP是如何保证可靠传输的

    TCP 协议如何保证可靠传输   一.综述 1.确认和重传:接收方收到报文就会确认,发送方发送一段时间后没有收到确认就重传. 2.数据校验 3.数据合理分片和排序: UDP:IP数据报大于1500字节 ...

  9. 【Dubbo 源码解析】05_Dubbo 服务发现&引用

    Dubbo 服务发现&引用 Dubbo 引用的服务消费者最终会构造成一个 Spring 的 Bean,具体是通过 ReferenceBean 来实现的.它是一个 FactoryBean,所有的 ...

  10. springmvc 返回 404 解决

    Idea Maven springmvc spring 项目搭建中/url 可以访问controller,并且能返回正确的ModelAndView,但是页面总是显示404 项目结构: web.xml ...