Luogu3793 由乃救爷爷 分块、ST表
因为昨天写暴力写挂在UOJ上用快排惨遭卡常,所以今天准备写一个卡常题消遣消遣,然后时间又垫底了QAQ
这道题显然需要支持一个\(O(N)\)预处理\(O(1)\)查询的ST表,显然普通的ST表是做不到的,因为预处理的时间太长了
于是分块优化掉ST表的预处理
约定\(L_i,R_i\)表示第\(i\)个块的左端点和右端点,\(be_i\)表示第\(i\)个数所在的块
对于每一个位置\(i\)预处理\(L_{be_i}\)到\(i\)的所有数的最大值\(lmax_i\)以及\(i\)到\(R_{be_i}\)的所有数的最大值\(rmax_i\);预处理块最大值的ST表
对于一个询问\((l,r)\),如果\(be_i \neq be_r\)查询\(rmax_l , lmax_r\)以及\(be_l+1\)到\(be_r-1\)的所有块的最大值,三者取\(max\);如果\(be_l = be_r\)就暴力
考虑复杂度,设块长为\(S\),预处理复杂度瓶颈为ST表复杂度\(O(\frac{N}{S}log\frac{N}{S})\);询问复杂度上,如果\(be_l \neq be_r\)为\(O(1)\),否则为\(O(S)\)。因为数据随机,出现\(be_l = be_r\)的概率为\(\frac{S}{N}\),所以最坏查询复杂度为\(O(S^2)\),总复杂度为\(O(\frac{N}{S}log\frac{N}{S} + S^2)\)
差不多当\(S = \sqrt[3]{NlogN}\)的时候有最优复杂度,但是因为数据随机所以块长开大一点也没关系
然后可能需要一些奇怪的常数优化比如把max define掉之类的
#include<bits/stdc++.h>
using namespace std;
namespace GenHelper
{
unsigned z1,z2,z3,z4,b;
unsigned rand_()
{
b=((z1<<6)^z1)>>13;
z1=((z1&4294967294U)<<18)^b;
b=((z2<<2)^z2)>>27;
z2=((z2&4294967288U)<<2)^b;
b=((z3<<13)^z3)>>21;
z3=((z3&4294967280U)<<7)^b;
b=((z4<<3)^z4)>>12;
z4=((z4&4294967168U)<<13)^b;
return (z1^z2^z3^z4);
}
}
void srand(unsigned x)
{
using namespace GenHelper;
z1=x; z2=(~x)^0x233333333U; z3=x^0x1234598766U; z4=(~x)+51;
}
int read()
{
using namespace GenHelper;
int a=rand_()&32767;
int b=rand_()&32767;
return a*32768+b;
}
const int MAXN = 2e7 + 7;
unsigned int arr[MAXN] , maxN1[MAXN] , maxN2[MAXN] , ST[15][26000] , logg2[26000];
unsigned int N , M , S , T , cnt;
#define cmp(a , b) ((a) > (b) ? (a) : (b))
inline unsigned int qST(int x , int y){
if(x > y)
return 0;
int t = logg2[y - x + 1];
return cmp(ST[t][x] , ST[t][y - (1 << t) + 1]);
}
int main(){
cin >> N >> M >> S;
srand(S);
T = pow(N * log2(N) , 1.0/3);
cnt = N / T + (N % T ? 1 : 0);
for(int i = 1 ; i <= N ; ++i){
arr[i] = read();
maxN2[i] = arr[i];
if(i % T != 1)
maxN2[i] = cmp(maxN2[i] , maxN2[i - 1]);
}
for(int i = N ; i ; --i){
maxN1[i] = arr[i];
if(i % T)
maxN1[i] = cmp(maxN1[i] , maxN1[i + 1]);
if(i % T == 1)
ST[0][i / T + 1] = maxN1[i];
}
for(int i = 2 ; i <= cnt ; ++i)
logg2[i] = logg2[i >> 1] + 1;
for(int i = 1 ; 1 << i <= cnt ; ++i)
for(int j = 1 ; j + (1 << i) - 1 <= cnt ; ++j)
ST[i][j] = cmp(ST[i - 1][j] , ST[i - 1][j + (1 << (i - 1))]);
unsigned long long sum = 0;
while(M--){
int l = read() % N + 1 , r = read() % N + 1;
if(l > r)
swap(l , r);
if((l - 1) / T == (r - 1) / T){
unsigned int ans = 0;
for(int i = l ; i <= r ; ++i)
ans = cmp(ans , arr[i]);
sum += ans;
}
else
sum += cmp(cmp(maxN1[l] , maxN2[r]) , qST((l - 1) / T + 2 , (r - 1) / T));
}
cout << sum;
return 0;
}
Luogu3793 由乃救爷爷 分块、ST表的更多相关文章
- P3793-由乃救爷爷【分块,ST表】
正题 题目链接:https://www.luogu.com.cn/problem/P3793 题目大意 给出\(n\)个数字的一个序列\(m\)次询问区间最大值 保证数据随机 \(1\leq n,m\ ...
- 【JZOJ5064】【GDOI2017第二轮模拟day2】友好城市 Kosarajo算法+bitset+ST表+分块
题面 在Byteland 一共有n 座城市,编号依次为1 到n,这些城市之间通过m 条单向公路连接. 对于两座不同的城市a 和b,如果a 能通过这些单向道路直接或间接到达b,且b 也能如此到达a,那么 ...
- Luogu 3793 由乃救爷爷
\(\verb|Luogu 3793 由乃救爷爷|\) rmq,数据随机 \(n,\ m\leq 2\times10^7\) lxl ST表 分块,大小设为 \(x\) 预处理每个块两端到块内每个点的 ...
- [bzoj4540][Hnoi2016][序列] (莫队算法+单调栈+st表)
Description 给定长度为n的序列:a1,a2,…,an,记为a[1:n].类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,…,ar-1,ar.若1≤l≤s≤t≤r≤n,则称a ...
- [BZOJ1012] [JSOI2008] 最大数maxnumber (ST表)
Description 现在请求你维护一个数列,要求提供以下两种操作:1. 查询操作.语法:Q L 功能:查询当前数列中末尾L个数中的最大的数,并输出这个数的值.限制:L不超过当前数列的长度.2. 插 ...
- CF1039E Summer Oenothera Exhibition 贪心、根号分治、倍增、ST表
传送门 感谢这一篇博客的指导(Orzwxh) $PS$:默认数组下标为$1$到$N$ 首先很明显的贪心:每一次都选择尽可能长的区间 不妨设$d_i$表示在取当前$K$的情况下,左端点为$i$的所有满足 ...
- CF1039E Summer Oenothera Exhibition 根号分治,LCT,ST表
CF1039E Summer Oenothera Exhibition LG传送门 根号分治好题. 可以先看我的根号分治总结. 题意就是给出长度为\(n\)的区间和\(q\)组询问以及一个\(w\), ...
- 【笔记】自学ST表笔记
自学ST表笔记 说实话原先QBXT学的ST表忘的差不多了吧...... 我重新自学巩固一下(回忆一下) 顺便把原先一些思想来源的原博发上来 一.ST表简介 ST表,建表时间\(O(n\cdot log ...
- [洛谷P3793]由乃救爷爷
题目大意:有$n(n\leqslant2\times10^7)$个数,$m(m\leqslant2\times10^7)$个询问,每次询问问区间$[l,r]$中的最大值.保证数据随机 题解:分块,处理 ...
随机推荐
- 【代码笔记】Web-JavaScript-JavaScript 数据类型
一,效果图. 二,代码. <!DOCTYPE html> <html> <head> <meta charset="utf-8"> ...
- vue-cli脚手架目录一览
最近在学习vue,看的稀里糊涂.今天从头开始,把cli配置的vue项目目录和配置文件搞清楚. 先看看整个项目目录结构: 再看看build文件夹下相关文件及目录: config文件夹下目录和文件: 接下 ...
- 关注的Elasticsearch大牛博客
1.http://wangnan.tech/ 2.https://elasticsearch.cn/people/wood 3.https://www.jianshu.com/u/244399b1d7 ...
- Django 认证
from django.contrib import auth 1.authenticate() 提供了用户认证,即验证用户名以及密码是否正确,一般需要username和password两个关键字参数 ...
- debian图形界面安装安装GNOME中文桌面环境_刀光剑影_新浪博客 - Google Chrome
debian图形界面安装安装GNOME中文桌面环境 (2012-06-12 16:47:41) 转载▼ 标签: 杂谈 分类: linux 安装GNOME中文桌面环境 安装基本的X系统 # apt-g ...
- server 2008 软阵列
RAID0:没有容错功能,等.两块以上的硬盘.RAID1:不能提高速度,有容错功能,等.注意:只能用两块硬盘,有的地方说可以用两块以上,你不信试试三块硬盘,肯定添加不了,但是可以做raid10.RAI ...
- Conjob For hybris
1.Defining the Job 写conjob的逻辑:core包下当做service层(要继承AbstractJobPerformable<CronJobModel>) public ...
- 【PAT】B1075 链表元素分类(25 分)
这道题算有点难,心目中理想的难度. 不能前怕狼后怕虎,一会担心超时,一会又担心内存过大,直接撸 将三部分分别保存到vector 有意思的在于输出 分别输出第一个的add和num 中间输出nextadd ...
- January 30th, 2018 Week 05th Tuesday
The things you own end up owning you. 你占有的东西终将会占有你. When we are longing for something, we would be w ...
- asp.net core中使用HttpClient实现Post和Get的同步异步方法
准备工作 1.visual studio 2015 update3开发环境 2.net core 1.0.1 及以上版本 目录 1.HttpGet方法 2.HttpPost方法 3.使用示例 4. ...