在前面的内容,我们针对于RpcEndpoint启动以及RpcEndpoint消息处理机制进行了详细的介绍,在我们的大脑里,基本上可以构建Spark各节点的模样。接下来的章节将会从Spark如何从业务代码分解为Spark的任务,并最终调度这些任务进行详细的介绍。
 
     前面针对于Client启动过程以及Driver进行了详细的描述,下面我们根据用户代码中的SparkContext这个API类进行解读,该类Spark用户代码执行的基础,后续我们会陆续介绍,下面针对于SparkContext以及SparkContext运行过程中产生的Application进行介绍。
 
一、SparkContext创建过程
SparkContext在新建时
  • 内部创建一个SparkEnv,SparkEnv内部创建一个RpcEnv
    • RpcEnv内部创建并注册一个MapOutputTrackerMasterEndpoint(该Endpoint暂不介绍)
  • 接着创建DAGScheduler,TaskSchedulerImpl,SchedulerBackend
    • TaskSchedulerImpl创建时创建SchedulableBuilder,SchedulableBuilder根据类型分为FIFOSchedulableBuilder,FairSchedulableBuilder两类
  • 最后启动TaskSchedulerImpl,TaskSchedulerImpl启动SchedulerBackend
    • SchedulerBackend启动时创建ApplicationDescription,DriverEndpoint, StandloneAppClient
    • StandloneAppClient内部包括一个ClientEndpoint
 
二、SparkContext简易结构与交互关系
     
  • SparkContext:是用户Spark执行任务的上下文,用户程序内部使用Spark提供的Api直接或间接创建一个SparkContext
  • SparkEnv:用户执行的环境信息,包括通信相关的端点
  • RpcEnv:SparkContext中远程通信环境
  • ApplicationDescription:应用程序描述信息,主要包含appName, maxCores, memoryPerExecutorMB, coresPerExecutor, Command(
    CoarseGrainedExecutorBackend),  appUiUrl等
  • ClientEndpoint:客户端端点,启动后向Master发起注册RegisterApplication请求
  • Master:接受RegisterApplication请求后,进行Worker资源分配,并向分配的资源发起LaunchExecutor指令
  • Worker:接受LaunchExecutor指令后,运行ExecutorRunner
  • ExecutorRunner:运行applicationDescription的Command命令,最终Executor,同时向DriverEndpoint注册Executor信息
 
三、Master对Application资源分配
     当Master接受Driver的RegisterApplication请求后,放入waitingDrivers队列中,在同一调度中进行资源分配,分配过程如下:
     
     waitingApps与aliveWorkers进行资源匹配
  • 如果waitingApp配置了app.desc.coresPerExecutor:
    • 轮询所有有效可分配的worker,每次分配一个executor,executor的核数为minCoresPerExecutor(app.desc.coresPerExecutor),直到不存在有效可分配资源或者app依赖的资源已全部被分配
  • 如果waitingApp没有配置app.desc.coresPerExecutor:
    • 轮询所有有效可分配的worker,每个worker分配一个executor,executor的核数为从minCoresPerExecutor(为固定值1)开始递增,直到不存在有效可分配资源或者app依赖的资源已全部被分配
  • 其中有效可分配worker定义为满足一次资源分配的worker:
    • cores满足:usableWorkers(pos).coresFree - assignedCores(pos) >= minCoresPerExecutor,
    • memory满足(如果是新的Executor):usableWorkers(pos).memoryFree - assignedExecutors(pos) * memoryPerExecutor >= memoryPerExecutor
  • 注意:Master针对于applicationInfo进行资源分配时,只有存在有效可用的资源就直接分配,而分配剩余的app.coresLeft则等下一次再进行分配
 
四、Worker创建Executor
     
(图解:橙色组件是Endpoint组件)
    Worker启动Executor
  • 在Worker的tempDir下面创建application以及executor的目录,并chmod700操作权限
  • 创建并启动ExecutorRunner进行Executor的创建
  • 向master发送Executor的状态情况
    ExecutorRnner
  • 新线程【ExecutorRunner for [executorId]】读取ApplicationDescription将其中Command转化为本地的Command命令
  • 调用Command并将日志输出至executor目录下的stdout,stderr日志文件中,Command对应的java类为CoarseGrainedExecutorBackend
    CoarseGrainedExecutorBackend
  • 创建一个SparkEnv,创建ExecutorEndpoint(CoarseGrainedExecutorBackend),以及WorkerWatcher
  • ExecutorEndpoint创建并启动后,向DriverEndpoint发送RegisterExecutor请求并等待返回
  • DriverEndpoint处理RegisterExecutor请求,返回ExecutorEndpointRegister的结果
  • 如果注册成功,ExecutorEndpoint内部再创建Executor的处理对象
 
   至此,Spark运行任务的容器框架就搭建完成

【Spark2.0源码学习】-8.SparkContext与Application介绍的更多相关文章

  1. 【Spark2.0源码学习】-3.Endpoint模型介绍

         Spark作为分布式计算框架,多个节点的设计与相互通信模式是其重要的组成部分.   一.组件概览      对源码分析,对于设计思路理解如下:            RpcEndpoint: ...

  2. 【Spark2.0源码学习】-1.概述

          Spark作为当前主流的分布式计算框架,其高效性.通用性.易用性使其得到广泛的关注,本系列博客不会介绍其原理.安装与使用相关知识,将会从源码角度进行深度分析,理解其背后的设计精髓,以便后续 ...

  3. spark2.0源码学习

    [Spark2.0源码学习]-1.概述 [Spark2.0源码学习]-2.一切从脚本说起 [Spark2.0源码学习]-3.Endpoint模型介绍 [Spark2.0源码学习]-4.Master启动 ...

  4. 【Spark2.0源码学习】-2.一切从脚本说起

    从脚本说起      在看源码之前,我们一般会看相关脚本了解其初始化信息以及Bootstrap类,Spark也不例外,而Spark我们启动三端使用的脚本如下: %SPARK_HOME%/sbin/st ...

  5. 【Spark2.0源码学习】-6.Client启动

    Client作为Endpoint的具体实例,下面我们介绍一下Client启动以及OnStart指令后的额外工作 一.脚本概览      下面是一个举例: /opt/jdk1..0_79/bin/jav ...

  6. 【Spark2.0源码学习】-4.Master启动

         Master作为Endpoint的具体实例,下面我们介绍一下Master启动以及OnStart指令后的相关工作   一.脚本概览      下面是一个举例: /opt/jdk1..0_79/ ...

  7. 【Spark2.0源码学习】-5.Worker启动

         Worker作为Endpoint的具体实例,下面我们介绍一下Worker启动以及OnStart指令后的额外工作   一.脚本概览      下面是一个举例: /opt/jdk1..0_79/ ...

  8. 【Spark2.0源码学习】-9.Job提交与Task的拆分

          在前面的章节Client的加载中,Spark的DriverRunner已开始执行用户任务类(比如:org.apache.spark.examples.SparkPi),下面我们开始针对于用 ...

  9. 【Spark2.0源码学习】-10.Task执行与回馈

         通过上一节内容,DriverEndpoint最终生成多个可执行的TaskDescription对象,并向各个ExecutorEndpoint发送LaunchTask指令,本节内容将关注Exe ...

随机推荐

  1. ThreadLocal的学习

    一 用法ThreadLocal用于保存某个线程共享变量:对于同一个static ThreadLocal,不同线程只能从中get,set,remove自己的变量,而不会影响其他线程的变量.1.Threa ...

  2. MYSQL存储过程实现用户登录

    MYSQL存储过程实现用户登录 CREATE DEFINER=`root`@`%` PROCEDURE `uc_session_login`( ), ) ) LANGUAGE SQL NOT DETE ...

  3. 阿里Java开发手册

    1.1 命名风格 (1)常量命名全部大写,单词间用下划线隔开. (2)抽象类命名以Abstract或Base开头:异常类命名以Exception结尾:测试类命名以它要测试的类名开始,以Test结尾. ...

  4. gitea 源码阅读笔记 002 生成无依赖单文件可执行包

    gitea bindata static gitea 可以通过 make generate 生成一个单文件可执行程序, 该文件不需要任何其它依赖,直接可以单独执行. 对于用户的安装.升级和生成dock ...

  5. layui流加载+h5自带模板

    @{ ViewBag.Title = "服务列表"; Layout = "~/Areas/hahaha/Views/Shared/_Head.cshtml"; ...

  6. Android 最简单的MVP案例;

    随手撸个发出来: V:界面层 //界面层需要实现P.View方法,然后重写P.View中的方法:M层给的数据就在这些个方法的参数中: // 还要获取到P.Provide的实例,使用P.Provide去 ...

  7. uva-993-贪心

    题意:给你一个数字y,生成另外一个最小的数字x,使得x里面的每一位相乘等于y 解题思路:直接贪心就是,x里面的每一位都小于等于9 #include <string> #include< ...

  8. ARCore中四元数的插值算法实现

    ARCore中四元数差值算法: 其中t的取值范围为[0, 1],当 t = 0 时,结果为a:当t = 1 时,结果为b. public static Quaternion makeInterpola ...

  9. JAVA Aes加解密详解

    上篇随笔留了一个问题,两种加密结果不一样? 其实是内部实现方式不一样,具体见注释 /** * 提供密钥和向量进行加密 * * @param sSrc * @param key * @param iv ...

  10. C# 对Excel操作与分析

    今天帮现在饿公司写个工具,要动态读excel上的ip地址与端口号,来更改IE的代理地址,由于好久没写Excel的操作了,只能查阅以前的项目,总结一下: 首先我们要引用我们的com接口的excelMic ...