使用python+hadoop-streaming编写hadoop处理程序
Hadoop Streaming提供了一个便于进行MapReduce编程的工具包,使用它可以基于一些可执行命令、脚本语言或其他编程语言来实现Mapper和 Reducer,从而充分利用Hadoop并行计算框架的优势和能力,来处理大数据
好吧我承认以上这句是抄的以下是原创干货
首先部署hadoop环境,这点可以参考 http://www.powerxing.com/install-hadoop-in-centos/
好吧原创从下一行开始
部署hadoop完成后,需要下载hadoop-streaming包,这个可以到http://www.java2s.com/Code/JarDownload/hadoop-streaming/hadoop-streaming-0.23.6.jar.zip去下载,或者访问http://www.java2s.com/Code/JarDownload/hadoop-streaming/选择最新版本,千万不要选择source否则后果自负,选择编译好的jar包即可,放到/usr/local/hadoop目录下备用
接下来是选择大数据统计的样本,我在阿里的天池大数据竞赛网站下载了母婴类购买统计数据,记录了900+个萌萌哒小baby的购买用户名、出生日期和性别信息,天池的地址https://tianchi.shuju.aliyun.com/datalab/index.htm
数据是一个csv文件,结构如下:
用户名,出生日期,性别(0女,1男,2不愿意透露性别)
比如:415971,20121111,0(数据已经脱敏处理)
下面我们来试着统计每年的男女婴人数
接下来开始写mapper程序mapper.py,由于hadoop-streaming是基于Unix Pipe的,数据会从标准输入sys.stdin输入,所以输入就写sys.stdin
#!/usr/bin/python
# -*- coding: utf-8 -*- import sys for line in sys.stdin:
line = line.strip()
data = line.split(',')
if len(data)<3:
continue
user_id = data[0]
birthyear = data[1][0:4]
gender = data[2]
print >>sys.stdout,"%s\t%s"%(birthyear,gender)
一个很简单的程序,看不懂的请自行提高姿势水平
下面是reduce程序,这里大家需要注意一下,map到reduce的期间,hadoop会自动给map出的key排序,所以到reduce中是一个已经排序的键值对,这简化了我们的编程工作
我是有洪荒之力的reducer.py,和外面的哪些妖艳贱货不一样
#!/usr/bin/python
# -*- coding: utf-8 -*- import sys gender_totle = {'':0,'':0,'':0}
prev_key = False
for line in sys.stdin:#map的时候map中的key会被排序
line = line.strip()
data = line.split('\t')
birthyear = data[0]
curr_key = birthyear
gender = data[1] #寻找边界,输出结果
if prev_key and curr_key !=prev_key:#不是第一次,并且找到了边界
print >>sys.stdout,"%s year has female %s and male %s"%(prev_key,gender_totle[''],gender_totle[''])#先输出上一次统计的结果
prev_key = curr_key
gender_totle[''] = 0
gender_totle[''] = 0
gender_totle[''] = 0#清零
gender_totle[gender] +=1#开始计数
else:
prev_key = curr_key
gender_totle[gender] += 1
#输出最后一行
if prev_key:
print >>sys.stdout,"%s year has female %s and male %s"%(prev_key,gender_totle[''],gender_totle[''])
接下来就是将样本和mapper reducer上传到hdfs中并执行了,这也是我踩坑的地方
可以先这样测试下python脚本是否正确
cat sample.csv | ./mapper.py | sort -t ' ' -k | ./reducer.py
首先要在hdfs中创建相应的目录,为了方便,我将一部分hadoop命令做了别名
alias stop-dfs='/usr/local/hadoop/sbin/stop-dfs.sh'
alias start-dfs='/usr/local/hadoop/sbin/start-dfs.sh'
alias dfs='/usr/local/hadoop/bin/hdfs dfs'
echo "alias stop-dfs='/usr/local/hadoop/sbin/stop-dfs.sh'" >> /etc/profile
echo "alias start-dfs='/usr/local/hadoop/sbin/start-dfs.sh'" >> /etc/profile
echo "alias dfs='/usr/local/hadoop/bin/hdfs dfs'" >> /etc/profile
启动hadoop后,先创建一个用户目录
dfs -mkdir -p /user/root
将样本上传到此目录中
dfs -put ./sample.csv /user/root
当然也可以这样处理更加规范,这两者的差别一会儿会说
dfs -mkdir -p /user/root/input
dfs -put ./sample.csv /user/root/input
接下来将mapper.py和reducer.py上传到服务器上,切换到上传以上两个文件的目录
然后就可以执行了,执行命令如下
hadoop jar /usr/local/hadoop/hadoop-streaming-0.23..jar \
-D mapred.job.name="testhadoop" \
-D mapred.job.queue.name=testhadoopqueue \
-D mapred.map.tasks= \
-D mapred.min.split.size= \
-D mapred.reduce.tasks= \
-D stream.num.map.output.key.fields= \
-D num.key.fields.for.partition= \
-input sample.csv \
-output output-streaming \
-mapper mapper.py \
-reducer reducer.py \
-file mapper.py \
-file reducer.py \
-partitioner org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner
如果是将sample.csv放到input下,这个命令就应该这么写,不过反正我也没试过,出错了不关我的事
hadoop jar /usr/local/hadoop/hadoop-streaming-0.23..jar \
-D mapred.job.name="testhadoop" \
-D mapred.job.queue.name=testhadoopqueue \
-D mapred.map.tasks= \
-D mapred.min.split.size= \
-D mapred.reduce.tasks= \
-D stream.num.map.output.key.fields= \
-D num.key.fields.for.partition= \
-input input/sample.csv \
-output output-streaming \
-mapper mapper.py \
-reducer reducer.py \
-file mapper.py \
-file reducer.py \
-partitioner org.apache.hadoop.mapred.lib.KeyFieldBasedPartitioner
命令的解释如下
(1)-input:输入文件路径
(2)-output:输出文件路径
(3)-mapper:用户自己写的mapper程序,可以是可执行文件或者脚本
(4)-reducer:用户自己写的reducer程序,可以是可执行文件或者脚本
(5)-file:打包文件到提交的作业中,可以是mapper或者reducer要用的输入文件,如配置文件,字典等。
这个一般是必须有的,因为mapper和reducer函数都是写在本地的文件中,因此需要将文件上传到集群中才能被执行
(6)-partitioner:用户自定义的partitioner程序
(7)-D:作业的一些属性(以前用的是-jonconf),具体有:
1)mapred.map.tasks:map task数目
设置的数目与实际运行的值并不一定相同,若输入文件含有M个part,而此处设置的map_task数目超过M,那么实际运行map_task仍然是M
2)mapred.reduce.tasks:reduce task数目 不设置的话,默认值就为1
3)num.key.fields.for.partition=N:shuffle阶段将数据集的前N列作为Key;所以对于wordcount程序,map输出为“word 1”,shuffle是以word作为Key,因此这里N=1
(8)-D stream.num.map.output.key.fields=1 这个是指在reduce之前将数据按前1列做排序,一般情况下可以去掉
接下来就是激动人心的一刻了,要非常用力地跪着按下enter键
如果有报错output-streaming already exists就用命令dfs -rm -R /user/root/output-streaming 然后跳起来按下enter键
即使出现奇怪的刷屏也不要惊奇恩妈妈是这么教我的
如果出现以下字样就是成功了
16/08/18 18:35:20 INFO mapreduce.Job: map 100% reduce 100%
16/08/18 18:35:20 INFO mapreduce.Job: Job job_local926114196_0001 completed successfully
之后使用如下命令将结果取回本地,使用cat命令就能查看
dfs -get /user/root/output-streaming/* ./output-streaming
cat ./output-streaming/*
很惭愧,只做了一点微小的工作
使用python+hadoop-streaming编写hadoop处理程序的更多相关文章
- 用python + hadoop streaming 编写分布式程序(一) -- 原理介绍,样例程序与本地调试
相关随笔: Hadoop-1.0.4集群搭建笔记 用python + hadoop streaming 编写分布式程序(二) -- 在集群上运行与监控 用python + hadoop streami ...
- 用python + hadoop streaming 编写分布式程序(二) -- 在集群上运行与监控
写在前面 相关随笔: Hadoop-1.0.4集群搭建笔记 用python + hadoop streaming 编写分布式程序(一) -- 原理介绍,样例程序与本地调试 用python + hado ...
- 用python + hadoop streaming 编写分布式程序(三) -- 自定义功能
又是期末又是实训TA的事耽搁了好久……先把写好的放上博客吧 相关随笔: Hadoop-1.0.4集群搭建笔记 用python + hadoop streaming 编写分布式程序(一) -- 原理介绍 ...
- hadoop streaming编程小demo(python版)
大数据团队搞数据质量评测.自动化质检和监控平台是用django,MR也是通过python实现的.(后来发现有orc压缩问题,python不知道怎么解决,正在改成java版本) 这里展示一个python ...
- Hadoop Streaming
原文地址:http://hadoop.apache.org/docs/r1.0.4/cn/streaming.html Hadoop Streaming Streaming工作原理 将文件打包到提交的 ...
- hadoop streaming anaconda python 计算平均值
原始Liunx 的python版本不带numpy ,安装了anaconda 之后,使用hadoop streaming 时无法调用anaconda python , 后来发现是参数没设置好... 进 ...
- Hadoop Streaming例子(python)
以前总是用java写一些MapReduce程序现举一个例子使用Python通过Hadoop Streaming来实现Mapreduce. 任务描述: HDFS上有两个目录/a和/b,里面数据均有3列, ...
- Hadoop Streaming框架学习(一)
Hadoop Streaming框架学习(一) Hadoop Streaming框架学习(一) 2013-08-19 12:32 by ATP_, 473 阅读, 3 评论, 收藏, 编辑 1.Had ...
- hadoop streaming 编程
概况 Hadoop Streaming 是一个工具, 代替编写Java的实现类,而利用可执行程序来完成map-reduce过程.一个最简单的程序 $HADOOP_HOME/bin/hadoop jar ...
随机推荐
- 页面初始化document.body.clientWidth大小变化
目前:原因不明 初步判断:设置字体大小前图片加载失败! 结果:等待验证
- ELK之安装了search guard认证后安装elasticsearch-head
安装searc guard参考https://www.cnblogs.com/minseo/p/10576126.html 安装elasticsearch-head参考 https://www.cnb ...
- 1.7Oob对象的创建局部变量
1:局部变量不会被系统自动初始化,所以局部变量必须进行初始化操作. 2:break是跳出当前循环体,return是跳出当前循环体和方法 并且结束外围循环体和方法,continue是跳过本次循环 3:创 ...
- poj3278
#include<iostream> #define MAX 100001 int john,cow; int queue[MAX]; int vis[MAX]; int ans; voi ...
- C++ 在继承中虚函数、纯虚函数、普通函数,三者的区别
1.虚函数(impure virtual) C++的虚函数主要作用是“运行时多态”,父类中提供虚函数的实现,为子类提供默认的函数实现. 子类可以重写父类的虚函数实现子类的特殊化. 如下就是一个父类中的 ...
- python练习题-day8
1.有如下文件,a1.txt,里面的内容为: 老男孩是最好的培训机构, 全心全意为学生服务, 只为学生未来,不为牟利. 我说的都是真的.哈哈 分别完成以下的功能: a,将原文件全部读出来并打印. wi ...
- 【托业】【跨栏阅读】错题集-REVIEW1
05 06 REVIEW 1
- Yii2 mongoDb的配置及使用
yii2 的配置都是在启动时加载的,所以mongo的配置也同样在component里面配置. 具体实现(无用户和密码): [ 'mongo1' => [ 'class' => '\yii\ ...
- Python静态方法(staticmethod)和类方法(classmthod)
Python静态方法(staticmethod)和类方法(classmthod)翻了翻之前的笔记,也刚好看到一篇不错的blog,关于静态方法和类方法的,方便以后查阅,就写在这里了,废话不多说,直接上代 ...
- Clone of COCO API
Clone of COCO API - Dataset @ http://cocodataset.org/ - with changes to support Windows build and py ...