BZOJ

洛谷


首先预处理出\(dis[i][j]\),表示从\(i\)到\(j\)的最短路。可以用\(Floyd\)处理。

注意\(i,j\)是没有大小关系限制的(\(i>j\)的\(dis[i][j]\)也要求,虽然后面用不到),因为可以从\(i\)经过中间点\(k,\ i<k<j\),到达\(j\)。同时\(i\to j\)只能经过\(k<\max(i,j)\)的点,否则是走不了\(k\)的。

然后题意可以转化为用不超过\(k\)条路径覆盖所有点,最小化边权和。

拆点,建二分图。对于任意两点\(i,j,\ i<j\),只由\(i\)向\(j'\)连边,容量\(1\),费用为\(dis[i][j]\)。这样建有向边也符合从编号小的向大的走,也不会出现环。

从\(S\)向\(1,...,n\)连容量\(1\),费用\(0\)的边;\(1,...,n\)向\(T\)连容量\(1\),费用\(0\)的边。

\(S\)向\(0\)连容量\(k\),费用\(0\)的边;\(0\)向每个拆点后的点\(1',...,n'\)连容量\(1\),费用\(dis[0][i]\)的边。

然后跑最小费用最大流即可。

这样为什么可以满足\(k\)路径覆盖呢。。从\(0\)向\(i'\)流就表示新建一条\(0\to i'\to...\)的路径,不会超过\(k\)条。(如果是\(i\to j',\ i\neq0\),则表示在一条已有的路径中从\(i\)走到了\(j\))

同时图是\(DAG\),且会满流,所以一定合法。

终于遇到zkw比SPFA慢的题了/托腮。


SPFA:

//3072kb	220ms
#include <queue>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define gc() getchar()
typedef long long LL;
const int N=305,M=(N*N/2+3*N)*2,INF=0x3f3f3f3f; int S,T,Cost,Enum,H[N],nxt[M],fr[M],to[M],cap[M],cost[M],dis[N][N],pre[N];
bool vis[N]; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-48,c=gc());
return now;
}
inline void AE(int u,int v,int w,int c)
{
to[++Enum]=v, fr[Enum]=u, nxt[Enum]=H[u], H[u]=Enum, cap[Enum]=w, cost[Enum]=c;
to[++Enum]=u, fr[Enum]=v, nxt[Enum]=H[v], H[v]=Enum, cap[Enum]=0, cost[Enum]=-c;
}
bool SPFA()
{
static int dis[N];
static bool inq[N];
static std::queue<int> q;
memset(dis,0x3f,sizeof dis);
dis[S]=0, q.push(S);
while(!q.empty())
{
int x=q.front(); q.pop();
inq[x]=0;
for(int i=H[x],v; i; i=nxt[i])
if(cap[i] && dis[to[i]]>dis[x]+cost[i])
dis[v=to[i]]=dis[x]+cost[i], pre[v]=i, !inq[v]&&(q.push(v),inq[v]=1);
}
return dis[T]<INF;
}
inline void Augment()
{
for(int i=T; i!=S; i=fr[pre[i]])
--cap[pre[i]], ++cap[pre[i]^1], Cost+=cost[pre[i]];
}
int MCMF()
{
while(SPFA()) Augment();
return Cost;
} int main()
{
const int n=read(),m=read(),K=read();
Enum=1, S=2*n+1, T=2*n+2;
memset(dis,0x3f,sizeof dis);
for(int i=0; i<=n; ++i) dis[i][i]=0;
for(int i=1,u,v; i<=m; ++i)
u=read(), v=read(), dis[u][v]=dis[v][u]=std::min(dis[v][u],read());
for(int k=0; k<=n; ++k)
for(int i=0; i<=n; ++i)
for(int j=0; j<=n; ++j)
if(k<i||k<j) dis[i][j]=std::min(dis[i][j],dis[i][k]+dis[k][j]);
AE(S,0,K,0);
for(int i=1; i<=n; ++i) AE(S,i,1,0), AE(i+n,T,1,0);
for(int i=0; i<n; ++i)
for(int j=i+1; j<=n; ++j)
AE(i,j+n,1,dis[i][j]);
printf("%d\n",MCMF()); return 0;
}

zkw:

//2704kb	280ms
#include <queue>
#include <cstdio>
#include <cctype>
#include <cstring>
#include <algorithm>
#define gc() getchar()
typedef long long LL;
const int N=305,M=(N*N/2+3*N)*2,INF=0x3f3f3f3f; int S,T,Cost,Enum,cur[N],H[N],nxt[M],to[M],cap[M],cost[M],dis[N][N],f[N];
bool vis[N]; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-48,c=gc());
return now;
}
inline void AE(int u,int v,int w,int c)
{
to[++Enum]=v, nxt[Enum]=H[u], H[u]=Enum, cap[Enum]=w, cost[Enum]=c;
to[++Enum]=u, nxt[Enum]=H[v], H[v]=Enum, cap[Enum]=0, cost[Enum]=-c;
}
bool SPFA()
{
static bool inq[N];
static std::queue<int> q;
memset(f,0x3f,T+1<<2);
f[S]=0, q.push(S);
while(!q.empty())
{
int x=q.front(); q.pop();
inq[x]=0;
for(int i=H[x],v; i; i=nxt[i])
if(cap[i] && f[to[i]]>f[x]+cost[i])
f[v=to[i]]=f[x]+cost[i], !inq[v]&&(q.push(v),inq[v]=1);
}
return f[T]<INF;
}
bool DFS(int x)
{
if(x==T) return 1;
vis[x]=1;
for(int &i=cur[x]; i; i=nxt[i])
if(cap[i] && !vis[to[i]] && f[to[i]]==f[x]+cost[i] && DFS(to[i]))//f not dis!
return --cap[i],++cap[i^1],Cost+=cost[i],1;
return 0;
}
int MCMF()
{
while(SPFA())
{
memset(vis,0,T+1), memcpy(cur,H,T+1<<2);
while(DFS(S));
}
return Cost;
} int main()
{
const int n=read(),m=read(),K=read();
Enum=1, S=2*n+1, T=2*n+2;
memset(dis,0x3f,sizeof dis);
for(int i=0; i<=n; ++i) dis[i][i]=0;
for(int i=1,u,v; i<=m; ++i)
u=read(), v=read(), dis[u][v]=dis[v][u]=std::min(dis[v][u],read());
for(int k=0; k<=n; ++k)
for(int i=0; i<=n; ++i)
for(int j=0; j<=n; ++j)
if(k<i||k<j) dis[i][j]=std::min(dis[i][j],dis[i][k]+dis[k][j]);
AE(S,0,K,0);
for(int i=1; i<=n; ++i) AE(S,i,1,0), AE(i+n,T,1,0);
for(int i=0; i<n; ++i)
for(int j=i+1; j<=n; ++j)
AE(i,j+n,1,dis[i][j]);
printf("%d\n",MCMF()); return 0;
}

BZOJ.2324.[ZJOI2011]营救皮卡丘(费用流 Floyd)的更多相关文章

  1. bzoj 2324 ZJOI 营救皮卡丘 费用流

    题的大概意思就是给定一个无向图,边有权值,现在你有k个人在0点,要求走到n点,且满足 1:人们可以分头行动,可以停在某一点不走了 2:当你走到x时,前x-1个点必须全部走过(不同的人走过也行,即分两路 ...

  2. bzoj 2324 [ZJOI2011]营救皮卡丘(floyd,费用流)

    2324: [ZJOI2011]营救皮卡丘 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1777  Solved: 712[Submit][Stat ...

  3. BZOJ 2324: [ZJOI2011]营救皮卡丘( floyd + 费用流 )

    昨晚写的题...补发一下题解... 把1~N每个点拆成xi, yi 2个. 预处理i->j经过编号不超过max(i,j)的最短路(floyd) S->0(K, 0), S->xi(1 ...

  4. bzoj2324 [ZJOI2011]营救皮卡丘 费用流

    [ZJOI2011]营救皮卡丘 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2653  Solved: 1101[Submit][Status][D ...

  5. BZOJ 2324: [ZJOI2011]营救皮卡丘(带上下限的最小费用最大流)

    这道题么= =还是有些恶心的,第一次写带上下界的网络流,整个人都萌萌哒~~~ 首先先预处理得最短路后 直接用费用流做就行了。 第一次写,还是挺好写的= = CODE: #include<cstd ...

  6. bzoj 2324: [ZJOI2011]营救皮卡丘

    #include<cstdio> #include<iostream> #include<cstring> #include<cmath> #inclu ...

  7. 【BZOJ 2324】[ZJOI2011]营救皮卡丘 费用流

    本人实行诱骗拐卖(利用自然分层与实际意义),正解拼接补充(充分利用最大流限制(不浪费任何一个走出去的机会而不是不浪费任何一个已有的流)与问题转换) #include <cstdio> #i ...

  8. 【bzoj2324】[ZJOI2011]营救皮卡丘 最短路-Floyd+有上下界费用流

    原文地址:http://www.cnblogs.com/GXZlegend/p/6832504.html 题目描述 皮卡丘被火箭队用邪恶的计谋抢走了!这三个坏家伙还给小智留下了赤果果的挑衅!为了皮卡丘 ...

  9. BZOJ2324: [ZJOI2011]营救皮卡丘

    2324: [ZJOI2011]营救皮卡丘 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1359  Solved: 522[Submit][Stat ...

随机推荐

  1. vue 中动态绑定class 和 style的方法

    先列举一些例子 :class="['content',{'radioModel':checkType}]" :class="['siteAppListDirNode',{ ...

  2. mysql5.7 root用户默认密码

    1. 查找密码 Mysql 5.7 在自动初始化数据库的时候,会生成root用户的默认密码. 通过 grep "temporary password" /var/log/mysql ...

  3. js call() 笔记

    var ctrl = function() {}; ctrl.view = function() { return { show: function() { console.log("vie ...

  4. Android播放图片动画

    1.布局文件中添加ImageView <ImageView android:id="@+id/iv_fan" android:layout_width="wrap_ ...

  5. Java接口自动化测试之HTTPClient学习(四)

    pom.xml  文件中dependency <dependencies> <dependency> <groupId>org.testng</groupId ...

  6. Nancy 返回值详解

    简介 Nancy 是一个轻量级的,简单粗暴的framework用来构建基于HTTP的各种服务,兼容.Net和Mono.它的返回值也是多种多样的,适应各种不同的情况.包括Response.AsFile( ...

  7. 解决ASP.NET MVC(post数据)Json请求太大,无法反序列化,而报【远程服务器返回错误: (500) 内部服务器错误】

    1. 修改web.config文件可以改变这个默认值(上传1个G) <configuration> <system.web> <httpRuntime maxReques ...

  8. vi/vim键盘对应图

    来源:http://www.runoob.com/linux/linux-vim.html

  9. Hyper-V 替换 vmwp

    要激活 Hyper-V 下的虚机 最简单的方法是用带证书的vmwp替换掉原来的 带证书的vmwp参见:http://bbs.pcbeta.com/viewthread-1408240-1-1.html ...

  10. [转] js中的事件委托或是事件代理详解

    起因: 1.这是前端面试的经典题型,要去找工作的小伙伴看看还是有帮助的: 2.其实我一直都没弄明白,写这个一是为了备忘,二是给其他的知其然不知其所以然的小伙伴们以参考: 概述: 那什么叫事件委托呢?它 ...